El sistema binario, llamado también sistema diádico1 en ciencias de la computación, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1). Es uno de los que se utiliza en las computadoras, debido a que trabajan internamente con dos niveles de voltaje, por lo cual su sistema de numeración natural es el sistema binario El antiguo matemático indio Pingala presentó la primera descripción que se conoce de un sistema de numeración binario en el siglo tercero antes de nuestra era, lo cual coincidió con su descubrimiento del concepto del número cero.
Una serie completa de 8 trigramas y 64 hexagramas (análogos a 3 bits) y números binarios de 6 bits eran conocidos en la antigua China en el texto clásico del I Ching. Series similares de combinaciones binarias también han sido utilizadas en sistemas de adivinación tradicionales africanos, como el Ifá, así como en la geomancia medieval occidental.
Un arreglo binario ordenado de los hexagramas del I Ching, representando la secuencia decimal de 0 a 63, y un método para generar el mismo fue desarrollado por el erudito y filósofo Chino Adgart en el siglo XI.
En 1605 Francis Bacon habló de un sistema por el cual las letras del alfabeto podrían reducirse a secuencias de dígitos binarios, las cuales podrían ser codificadas como variaciones apenas visibles en la fuente de cualquier texto arbitrario.
El sistema binario moderno fue documentado en su totalidad por Leibniz, en el siglo XVII, en su artículo "Explication de l'Arithmétique Binaire". En él se mencionan los símbolos binarios usados por matemáticos chinos. Leibniz utilizó el 0 y el 1, al igual que el sistema de numeración binario actual.
En 1854, el matemático británico George Boole publicó un artículo que marcó un antes y un después, detallando un sistema de lógica que terminaría denominándose Álgebra de Boole. Dicho sistema desempeñaría un papel fundamental en el desarrollo del sistema binario actual, particularmente en el desarrollo de circuitos electrónicos.
Sistemas de numeración Sistema de numeración decimal Sistema de numeración binario Conversión entre números decimales y binarios El tamaño de las cifras binarias Conversión de binario a decimal Sistema de numeración octal Conversión de un número decimal a octal Conversión octal a decimal Sistema de numeración hexadecimal Conversión de números binarios a octales y viceversa Conversión de números binarios a hexadecimales y viceversa
Un arreglo binario ordenado de los hexagramas del I Ching, representando la secuencia decimal de 0 a 63, y un método para generar el mismo fue desarrollado por el erudito y filósofo Chino Adgart en el siglo XI. El sistema binario moderno fue documentado en su totalidad por Leibniz, en el siglo XVII, en su artículo "Explication de l'Arithmétique Binaire". En él se mencionan los símbolos binarios usados por matemáticos chinos. Leibniz utilizó el 0 y el 1, al igual que el sistema de numeración binario actual. SISTEMA DE MUMERACION un sistema de numeración es un conjunto de símbolos y reglas de generación que permiten construir todos los números válidos.es el sistema de numeración considerado (p.ej. decimal, binario, etc.). S\, es el conjunto de símbolos permitidos en el sistema. En el caso del sistema decimal son {0,1,...9}; en el binario son {0,1}; en el octal son {0,1,...7}; en el hexadecimal son {0,1,...9,A,B,C,D,E,F}. son las reglas que nos indican qué números son válidos en el sistema, y cuáles no. En un sistema de numeración posicional las reglas son bastante simples, mientras que la numeración romana requiere reglas algo más elaboradas. Estas reglas son diferentes para cada sistema de numeración considerado, pero una regla común a todos es que para construir números válidos en un sistema de numeración determinado sólo se pueden utilizar los símbolos permitidos en ese sistema. OCTAL En informática a veces se utiliza la numeración octal en vez de la hexadecimal. Tiene la ventaja de que no requiere utilizar otros símbolos diferentes de los dígitos. Sin embargo, para trabajar con bytes o conjuntos de ellos, asumiendo que un byte es una palabra de 8 bits, suele ser más cómodo el sistema hexadecimal, por cuanto todo byte así definido es completamente representable por dos dígitos hexadecimales. DECIMAL Para otros usos de este término, véase Decimal. Este artículo trata sobre parte entera y parte fraccionaria. Para números enteros, esto pasa porque el dominador es menor a diez, véase Sistema de numeración decimal. Se denominan números decimales aquellos que poseen una parte decimal, en oposición a los números enteros que carecen de ella.1 Así, un número x perteneciente a R escrito usando la representación decimal tiene la siguiente expresión: x = a, a_1a_2 \cdots a_n \cdots donde a es un número entero cualquiera, llamado parte entera, separado por una coma o punto de la parte fraccionaria: cada ai con i = 1,2,...,n,... y 0 ≤ ai ≤ 9.2 3 HEXADECIMAL El sistema hexadecimal (a veces abreviado como Hex, no confundir con sistema sexagesimal) es el sistema de numeración posicional que tiene como base el 16. Su uso actual está muy vinculado a la informática y ciencias de la computación, pues los computadores suelen utilizar el byte u octeto como unidad básica de memoria; y, debido a que un byte representa 2^8 valores posibles, y esto puede representarse como 2^8 = 2^4 \cdot 2^4 = 16 \cdot 16 = 1 \cdot 16^2 + 0 \cdot 16^1 + 0 \cdot 16^0, que equivale al número en base 16 100_{16}, dos dígitos hexadecimales corresponden exactamente a un byte.En principio, dado que el sistema usual de numeración es de base decimal y, por ello, sólo se dispone de diez dígitos, se adoptó la convención de usar las seis primeras letras del alfabeto latino para suplir los dígitos que nos faltan. El conjunto de símbolos sería, por tanto, el siguiente:Se debe notar que A = 10, B = 11, C = 12, D = 13, E = 14 y F = 15. En ocasiones se emplean letras minúsculas en lugar de mayúsculas. Como en cualquier sistema de numeración posicional, el valor numérico de cada dígito es alterado dependiendo de su posición en la cadena de dígitos, quedando multiplicado por una cierta potencia de la base del sistema, que en este caso es 16. Por ejemplo: 3E0A16 = 3×163 + E×162 + 0×161 + A×160 = 3×4096 + 14×256 + 0×16 + 10×1 = 15882.El sistema hexadecimal actual fue introducido en el ámbito de la computación por primera vez por IBM en 1963. Una representación anterior, con 0–9 y u–z, fue usada en 1956 por la computadora Bendix G-15.
¿QUE ES UN SISTEMA BINARIO? El sistema binario, llamado también sistema diádico en ciencias de la computación, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1). Es uno de los que se utiliza en las computadoras, debido a que trabajan internamente con dos niveles de voltaje, por lo cual su sistema de numeración natural es el sistema binario (encendido 1, apagado 0). El sistema binario, llamado también sistema diádico en ciencias de la computación, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1). Es uno de los que se utiliza en las computadoras, debido a que trabajan internamente con dos niveles de voltaje, por lo cual su sistema de numeración natural es el sistema binario (encendido 1, apagado 0). ¿QUE ES UN SISTEMA DE NUMERACION BINARIO, OCTAL, DECIMAL Y HEXADECIMAL? Sistema de numeración binario. El sistema de numeración binario utiliza sólo dos dígitos, el cero (0) y el uno (1). En una cifra binaria, cada dígito tiene distinto valor dependiendo de la posición que ocupe. El valor de cada posición es el de una potencia de base 2, elevada a un exponente igual a la posición del dígito menos uno, además la base de la potencia coincide con la cantidad de dígitos utilizados (2) para representar los números. Sistema de numeración decimal: El sistema de numeración que utiliza¬mos habitualmente es el decimal, que se compone de diez símbolos o dígi¬tos (0, 1, 2, 3, 4, 5, 6, 7, 8 y 9) a los que otorga un valor dependiendo de la posición que ocupen en la cifra: unidades, decenas, centenas, millares, etc. El valor de cada dígito está asociado al de una potencia de base 10, número que coincide con la cantidad de símbolos o dígitos del sistema decimal, y un exponente igual a la posición que ocupa el dígito menos uno, contando desde la de¬recha. Sistema de numeración octal En el sistema de numeración octal, los números se representan mediante ocho dígitos diferentes: 0, 1, 2, 3, 4, 5, 6 y 7. Cada dígito tiene, naturalmente, un valor distinto dependiendo del lu¬gar que ocupen. El valor de cada una de las posiciones viene determinado por las potencias de base 8. Sistema de numeración hexadecimal En el sistema hexadecimal los números se representan con dieciséis símbolos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E y F. Se utilizan los caracteres A, B, C, D, E y F representando las cantidades decima¬les 10, 11, 12, 13, 14 y 15 respectivamente, porque no hay dígitos mayores que 9 en el sistema decimal. El valor de cada uno de estos símbolos depende, como es lógico, de su posición, que se calcula mediante potencias de base 16.
SISTEMA BINARIO El sistema binario, llamado también sistema diádico en ciencias de la computación, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1) es decir solo 2 dígitos, esto en informática tiene mucha importancia ya que las computadoras trabajan internamente con 2 niveles de Tensión lo que hace que su sistema de numeración natural sea binario, por ejemplo 1 para encendido y 0 para apagado.. Es uno de los que se utiliza en las computadoras, debido a que trabajan internamente con dos niveles de voltaje, por lo cual su sistema de numeración natural es el sistema binario. También se utiliza en electrónica y en electricidad (encendido o apagado, activado o desactivado). SISTEMAS DE NUMERACIÓN binario, octal y hexadecimal • Sistemas de numeración Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar datos numéricos. Los sistemas de numeración actuales son sistemas posicionales, que se caracterizan porque un símbolo tiene distinto valor según la posición que ocupa en la cifra. • Sistema de numeración decimal: El sistema de numeración que utilizamos habitualmente es el decimal, que se compone de diez símbolos o dígitos (0, 1, 2, 3, 4, 5, 6, 7, 8 y 9) a los que otorga un valor dependiendo de la posición que ocupen en la cifra: unidades, decenas, centenas, millares, etc. El valor de cada dígito está asociado al de una potencia de base 10, número que coincide con la cantidad de símbolos o dígitos del sistema decimal, y un exponente igual a la posición que ocupa el dígito menos uno, contando desde la derecha.
• Sistema de numeración binario. El sistema de numeración binario utiliza sólo dos dígitos, el cero (0) y el uno (1). En una cifra binaria, cada dígito tiene distinto valor dependiendo de la posición que ocupe. El valor de cada posición es el de una potencia de base 2, elevada a un exponente igual a la posición del dígito menos uno. Se puede observar que, tal y como ocurría con el sistema decimal, la base de la potencia coincide con la cantidad de dígitos utilizados (2) para representar los números. • Sistema de numeración octal El inconveniente de la codificación binaria es que la representación de algunos números resulta muy larga. Por este motivo se utilizan otros sistemas de numeración que. En el sistema de numeración octal, los números se representan mediante ocho dígitos diferentes: 0, 1, 2, 3, 4, 5, 6 y 7. Cada dígito tiene, naturalmente, un valor distinto dependiendo del lu¬gar que ocupen. El valor de cada una de las posiciones viene determinado por las potencias de base 8.
• Sistema de numeración hexadecimal En el sistema hexadecimal los números se representan con dieciséis símbolos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E y F. Se utilizan los caracteres A, B, C, D, E y F representando las cantidades decimales 10, 11, 12, 13, 14 y 15 respectivamente, porque no hay dígitos mayores que 9 en el sistema decimal. El valor de cada uno de estos símbolos depende, como es lógico, de su posición, que se calcula mediante potencias de base 16.
Sistema de numeración binario. El sistema de numeración binario utiliza sólo dos dígitos, el cero (0) y el uno (1). En una cifra binaria, cada dígito tiene distinto valor dependiendo de la posición que ocupe. El valor de cada posición es el de una potencia de base 2, elevada a un exponente igual a la posición del dígito menos uno. Se puede observar que, tal y como ocurría con el sistema decimal, la base de la potencia coincide con la cantidad de dígitos utilizados (2) para representar los números. Sistema de numeración octal
El inconveniente de la codificación binaria es que la representación de algunos números resulta muy larga. Por este motivo se utilizan otros sistemas de numeración que resulten más cómodos de escribir: el sistema octal y el sistema hexadecimal. Afortunadamente, resulta muy fácil convertir un número binario a octal o a hexadecimal. En el sistema de numeración octal, los números se representan mediante ocho dígitos diferentes: 0, 1, 2, 3, 4, 5, 6 y 7. Cada dígito tiene, naturalmente, un valor distinto dependiendo del lugar que ocupen. El valor de cada una de las posiciones viene determinado por las potencias de base 8. Por ejemplo, el número octal 2738 tiene un valor que se calcula así:
2*83 + 7*82 + 3*81 = 2*512 + 7*64 + 3*8 = 149610
2738 = 149610 Conversión de binario a decimal
El proceso para convertir un número del sistema binario al decimal es aún más sencillo; basta con desarrollar el número, teniendo en cuenta el valor de cada dígito en su posición, que es el de una potencia de 2, cuyo exponente es 0 en el bit situado más a la derecha, y se incrementa en una unidad según vamos avanzando posiciones hacia la izquierda. Por ejemplo, para convertir el número binario 10100112 a decimal, lo desarrollamos teniendo en cuenta el valor de cada bit:
En el sistema hexadecimal los números se representan con dieciséis símbolos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E y F. Se utilizan los caracteres A, B, C, D, E y F representando las cantidades decimales 10, 11, 12, 13, 14 y 15 respectivamente, porque no hay dígitos mayores que 9 en el sistema decimal. El valor de cada uno de estos símbolos depende, como es lógico, de su posición, que se calcula mediante potencias de base 16. Calculemos, a modo de ejemplo, el valor del número hexadecimal 1A3F16:
Sistema de numeración binario Conversión de binario a decimal.- El sistema de numeración binario u un sistema de posición donde cada dígito binario (bit) tiene un valor basado en su posición relativa al LSB. Cualquier número binario puede convenirse a su equivalente decimal, simplemente sumando en el número binario las diversas posiciones que contenga un 1. Por ejemplo: 1 1 1 0 1 12 de binario a decimal 1 x 25 + 1 x 24 + 1 x 23 + 0 x 22 + 1 x 2 + 1 = 6910 Conversión de decimal a binario.- Existen dos maneras de convenir un número decimal entero a su representación equivalente en el sistema binario. El primer método es inverso al proceso descrito anteriormente. El número decimal se expresa simplemente como una suma de potencias de 2 y luego los unos y los ceros se escriben en las posiciones adecuadas de los bits. Sistema de numeración octal El sistema de numeración octal es un sistema de numeración en base 8, una base que es potencia exacta de 2 o de la numeración binaria. Esta característica hace que la conversión a binario o viceversa sea bastante simple. El sistema octal usa 8 dígitos (0, 1, 2, 3, 4, 5, 6, 7) y tienen el mismo valor que en el sistema de numeración decimal. El teorema fundamental aplicado al sistema octal sería el siguiente:
Sistema de numeración decimal El sistema de numeración decimal, también llamado sistema decimal, es un sistema de numeración posicional en el que las cantidades se representan utilizando como base aritmética las potencias del número diez. El conjunto de símbolos utilizado (sistema de numeración arábiga) se compone de diez cifras : cero (0) - uno (1) - dos (2) - tres (3) - cuatro (4) - cinco (5) - seis (6) - siete (7) - ocho (8) y nueve (9). Excepto en ciertas culturas, es el sistema usado habitualmente en todo el mundo y en todas las áreas que requieren de un sistema de numeración. Sin embargo hay ciertas técnicas, como por ejemplo en la informática, donde se utilizan sistemas de numeración adaptados al método del binario o el hexadecimal.
SISTEMA BINARIO El sistema binario, llamado también sistema diádico en ciencias de la computación, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1). Es uno de los que se utiliza en las computadoras, debido a que trabajan internamente con dos niveles de voltaje, por lo cual su sistema de numeración natural es el sistema binario (encendido 1, apagado 0). Un número binario puede ser representado por cualquier secuencia de bits (dígitos binarios), que suelen representar cualquier mecanismo capaz de usar dos estados mutuamente excluyentes. Las siguientes secuencias de símbolos podrían ser interpretadas como el mismo valor numérico binario: 1 0 1 0 0 1 1 0 1 1 ¦ − ¦ − − ¦ ¦ − ¦ ¦ x o x o o x x o x x y n y n n y y n y y
SISTEMA DE NUMERACIÓN BINARIO. El sistema de numeración binario utiliza sólo dos dígitos, el cero (0) y el uno (1). En una cifra binaria, cada dígito tiene distinto valor dependiendo de la posición que ocupe. El valor de cada posición es el de una potencia de base 2, elevada a un exponente igual a la posición del dígito menos uno. Se puede observar que, tal y como ocurría con el sistema decimal, la base de la potencia coincide con la cantidad de dígitos utilizados (2) para representar los números. SISTEMA DE NUMERACIÓN OCTAL El inconveniente de la codificación binaria es que la representación de algunos números resulta muy larga. Por este motivo se utilizan otros sistemas de numeración que resulten más cómodos de escribir: el sistema octal y el sistema hexadecimal. Afortunadamente, resulta muy fácil convertir un número binario a octal o a hexadecimal. En el sistema de numeración octal, los números se representan mediante ocho dígitos diferentes: 0, 1, 2, 3, 4, 5, 6 y 7. Cada dígito tiene, naturalmente, un valor distinto dependiendo del lugar que ocupen. El valor de cada una de las posiciones viene determinado por las potencias de base 8. SISTEMA DE NUMERACIÓN HEXADECIMAL En el sistema hexadecimal los números se representan con dieciséis símbolos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E y F. Se utilizan los caracteres A, B, C, D, E y F representando las cantidades decimales 10, 11, 12, 13, 14 y 15 respectivamente, porque no hay dígitos mayores que 9 en el sistema decimal. El valor de cada uno de estos símbolos depende, como es lógico, de su posición, que se calcula mediante potencias de base 16. http://es.wikipedia.org/wiki/Sistema_binario http://platea.pntic.mec.es/~lgonzale/tic/binarios/numeracion.html#Sistema_de_numeraci%F3n_hexadecimal
En ciencias de la computación, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1). Es uno de los que se utiliza en las computadoras, debido a que trabajan internamente con dos niveles de voltaje, por lo cual su sistema de numeración natural es el sistema binario. Se basa en la representación de cantidades utilizando los dígitos 1 y 0. Por tanto su base es 2 (número de dígitos del sistema). Cada dígito de un número en este sistema se denomina bit (contracción de binary digit).
Por ejemplo el número en binario 1001 es de 4 bits. Según el orden ascendente de los números en decimal tendríamos un número equivalente en binario:
El 0 en decimal sería el 0 en binario El 1 en decimal sería el 1 en binario El 2 en decimal sería el 10 en binario El 3 en decimal sería el 11 en binario El 4 en decimal sería el 100 en binario Para hacer la conversión de decimal a binario, hay que ir dividiendo el número decimal entre dos y anotar en una columna a la derecha el resto (un 0 si el resultado de la división es par y un 1 si es impar). Para sacar la cifra en binario cogeremos el último cociente (siempre será 1) y todos los restos de las divisiones de abajo arriba, orden ascendente.
SISTEMA DE NUMERACION Un sistema de numeración es un conjunto de símbolos y reglas que permi¬ten representar datos numéricos. Los sistemas de numeración actuales son sistemas posicionales, que se caracterizan porque un símbo¬lo tiene distinto valor según la posición que ocupa en la cifra. SISTEM DE NUMERACION BINARIO El sistema de numeración binario utiliza sólo dos dígitos, el cero (0) y el uno (1). En una cifra binaria, cada dígito tiene distinto valor dependiendo de la posición que ocupe. El valor de cada posición es el de una potencia de base 2, elevada a un exponente igual a la posición del dígito menos uno. Se puede observar que, tal y como ocurría con el sistema decimal, la base de la potencia coincide con la cantidad de dígitos utilizados (2) para representar los números. De acuerdo con estas reglas, el número binario 1011 tiene un valor que se calcula así:
y para expresar que ambas cifras describen la misma cantidad lo escribimos así:
10112 = 1110 SISTEMA DE NUMERCION OCTAL Representar un número en Sistema Binario puede ser bastante difícil de leer, así que se creó el sistema octal. En el Sistema de Numeración Octal (base 8), sólo se utilizan 8 cifras (0, 1, 2, 3, 4, 5, 6, 7) Este Sistema de numeración una vez que se llega a la cuenta 7 se pasa a 10, etc.. La cuenta hecha en octal: 0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, ..... Se puede observar que en este sistema numérico no existen los números: 8 y 9. Para pasar del un Sistema Binario al Sistema Octal se utiliza el siguiente método: - Se divide el número binario en grupos de 3 empezando por la derecha. Si al final queda un grupo de 2 o 1 dígitos, se completa el grupo de 3 con ceros (0) al lado izquierdo. - Se convierte cada grupo en su equivalente en el Sistema octal y se reemplaza. SISTEMA DE NUMERACION DECIMAL En nuestro sistema de numeración empleamos diez cifras diferentes para expresar los valores. Es un sistema posicional porque el valor de una cifra depende de su posición, cada puesto más avanzado hacia la izquierda en que esté una cifra su valor es diez veces más.
En un número natural identificamos sus cifras desde la derecha: unidades, vale el valor que representa, decenas, vale 10 veces su valor, centenas, vale 100 veces su valor, unidades de millar, vale 1000 veces su valor, decenas de millar, vale 10000 veces su valor, centenas de millar, vale 100000 veces su valor, unidades de millón, vale 1000000 veces su valor, decenas de millón, vale 10000000 veces su valor, centenas de millón, vale 100000000 veces su valor,
SISTEMA DE NUMERACION HEXADECIMAL
El sistema hexadecimal (a veces abreviado como Hex, no confundir con sistema sexagesimal) es el sistema de numeración posicional que tiene como base el 16. Su uso actual está muy vinculado a la informática y ciencias de la computación, pues loscomputadores suelen utilizar el byte u octeto como unidad básica de memoria; y, debido a que un byte representa valores posibles, y esto puede representarse como , que equivale al número en base 16 , dos dígitos hexadecimales corresponden exactamente a un byte. En principio, dado que el sistema usual de numeración es de base decimal y, por ello, sólo se dispone de diez dígitos, se adoptó la convención de usar las seis primeras letras del alfabeto latino para suplir los dígitos que nos faltan. El conjunto de símbolos sería, por tanto, el siguiente:
Se debe notar que A = 10, B = 11, C = 12, D = 13, E = 14 y F = 15. En ocasiones se emplean letras minúsculas en lugar de mayúsculas. Como en cualquier sistema de numeración posicional, el valor numérico de cada dígito es alterado dependiendo de su posición en la cadena de dígitos, quedando multiplicado por una cierta potencia de la base del sistema, que en este caso es 16. Por ejemplo: 3E0A16 = 3×163 + E×162 + 0×161 + A×160 = 3×4096 + 14×256 + 0×16 + 10×1 = 15882.
El sistema binario, llamado también sistema diádico1 en ciencias de la computación, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1). Es uno de los que se utiliza en las computadoras, debido a que trabajan internamente con dos niveles de voltaje, por lo cual su sistema de numeración natural es el sistema binario (encendido 1, apagado 0. Ejemplo: el sistema binario puede ser representado solo por dos dígitos. Un número binario puede ser representado por cualquier secuencia de bits (dígitos binarios), que suelen representar cualquier mecanismo capaz de usar dos estados mutuamente excluyentes. Las siguientes secuencias de símbolos podrían ser interpretadas como el mismo valor numérico binario: 1 0 1 0 0 1 1 0 1 1 ¦ − ¦ − − ¦ ¦ − ¦ ¦ x o x o o x x o x x y n y n n y y n y y El valor numérico representado en cada caso depende del valor asignado a cada símbolo. En una computadora, los valores numéricos pueden representar dos voltajes diferentes; también pueden indicar polaridades magnéticas sobre un disco magnético. Un "positivo", "sí", o "sobre el estado" no es necesariamente el equivalente al valor numérico de uno; esto depende de la nomenclatura usada. De acuerdo con la representación más habitual, que es usando números arábigos, los números binarios comúnmente son escritos usando los símbolos 0 y 1. Los números binarios se escriben a menudo con subíndices, prefijos o sufijos para indicar su base. SISTEMA DE NUMERACION El sistema numérico decimal que utilizamos para representarlos números, utiliza diez símbolos llamados cifras.Este sistema de numeración es el másusado, tiene como base el número 10, osea que posee 10 dígitos (o simbolos)diferentes (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). BINARIO El sistema binario, en matemáticas e informática, esun sistema de numeración en el que los números serepresentan utilizando solamente las cifras cero y uno(0 y 1) OCTALDebido a que el sistema octal tiene como base 8, que es la tercera potencia de 2, y quedos es la base del sistema binario, es posible establecer un método directo para convertirde la base dos a la base ocho, sin tener que convertir de binario a decimal y luego dedecimal a octal. HEXADECIMAL Debido a que el sistema Hexadecimal tiene comobase 16, que es la cuarta potencia de 2, y que doses la base del sistema binario, es posibleestablecer un método directo para convertir de labase dos a la base diez y seis, sin tener queconvertir de binario a decimal y luego de decimal aHexadecimal DECIMAL
Se divide el número del sistema decimal entre 8, cuyo resultado entero se vuelve a dividirentre 8, y así sucesivamente hasta que el dividendo sea menor que el divisor, 8
-Que es es un sistema binario? es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1). Es uno de los que se utiliza en las computadoras, debido a que trabajan internamente con dos niveles de voltaje, por lo cual su sistema de numeración natural es el sistema binario.
-Sistemas de numeración Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar datos numéricos. Los sistemas de numeración actuales son sistemas posicionales, que se caracterizan porque un símbolo tiene distinto valor según la posición que ocupa en la cifra.
-Sistema de numeración binario. El sistema de numeración binario utiliza sólo dos dígitos, el cero (0) y el uno (1). En una cifra binaria, cada dígito tiene distinto valor dependiendo de la posición que ocupe. El valor de cada posición es el de una potencia de base 2, elevada a un exponente igual a la posición del dígito menos uno. Se puede observar que, tal y como ocurría con el sistema decimal, la base de la potencia coincide con la cantidad de dígitos utilizados (2) para representar los números. De acuerdo con estas reglas, el número binario 1011 tiene un valor que se calcula así:
1*23 + 0*22 + 1*21 + 1*20 , es decir:
8 + 0 + 2 + 1 = 11
-Sistema de numeración octal El inconveniente de la codificación binaria es que la representación de algunos números resulta muy larga. Por este motivo se utilizan otros sistemas de numeración que resulten más cómodos de escribir: el sistema octal y el sistema hexadecimal. Afortunadamente, resulta muy fácil convertir un número binario a octal o a hexadecimal. En el sistema de numeración octal, los números se representan mediante ocho dígitos diferentes: 0, 1, 2, 3, 4, 5, 6 y 7. Cada dígito tiene, naturalmente, un valor distinto dependiendo del lugar que ocupen. El valor de cada una de las posiciones viene determinado por las potencias de base 8. Por ejemplo, el número octal 2738 tiene un valor que se calcula así:
2*83 + 7*82 + 3*81 = 2*512 + 7*64 + 3*8 = 149610
2738 = 149610
-Sistema de numeracion decimal El sistema de numeración decimal, también llamado sistema decimal, es un sistema de numeración posicional en el que las cantidades se representan utilizando como base aritmética las potencias del número diez. El conjunto de símbolos utilizado (sistema de numeración arábiga) se compone de diez cifras : cero (0) - uno (1) - dos (2) - tres (3) - cuatro (4) - cinco (5) - seis (6) - siete (7) - ocho (8) y nueve (9).
-Sistema de numeración hexadecimal En el sistema hexadecimal los números se representan con dieciséis símbolos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E y F. Se utilizan los caracteres A, B, C, D, E y F representando las cantidades decimales 10, 11, 12, 13, 14 y 15 respectivamente, porque no hay dígitos mayores que 9 en el sistema decimal. El valor de cada uno de estos símbolos depende, como es lógico, de su posición, que se calcula mediante potencias de base 16. Calculemos, a modo de ejemplo, el valor del número hexadecimal 1A3F16:
l sistema binario, llamado también sistema diádico[1] en ciencias de la computación, es un sistema de numeración en el que losnúmeros se representan utilizando solamente las cifras cero y uno (0 y 1). Es uno de los que se utiliza en las computadoras, debido a que trabajan internamente con dos niveles devoltaje, por lo cual su sistema de numeración natural es el sistema binario (encendido 1, apagado 0)
SISTEMAS DE NUMERACIÓNbinario, octal y hexadecimalSistemas de numeraciónSistema de numeración decimalSistema de numeración binarioConversión entre números decimales y binariosEl tamaño de las cifras binariasConversión de binario a decimalSistema de numeración octalConversión de un número decimal a octalConversión octal a decimalSistema de numeración hexadecimalConversión de números binarios a octales y viceversaConversión de números binarios a hexadecimales y viceversa
Un arreglo binario ordenado de los hexagramas del I Ching, representando la secuencia decimal de 0 a 63, y un método para generar el mismo fue desarrollado por el erudito y filósofo Chino Adgart en el siglo XI. El sistema binario moderno fue documentado en su totalidad por Leibniz, en el siglo XVII, en su artículo "Explication de l'Arithmétique Binaire". En él se mencionan los símbolos binarios usados por matemáticos chinos. Leibniz utilizó el 0 y el 1, al igual que el sistema de numeración binario actual. SISTEMA DE MUMERACION un sistema de numeración es un conjunto de símbolos y reglas de generación que permiten construir todos los números válidos.es el sistema de numeración considerado (p.ej. decimal, binario, etc.). S\, es el conjunto de símbolos permitidos en el sistema. En el caso del sistema decimal son {0,1,...9}; en el binario son {0,1}; en el octal son {0,1,...7}; en el hexadecimal son {0,1,...9,A,B,C,D,E,F}. son las reglas que nos indican qué números son válidos en el sistema, y cuáles no. En un sistema de numeración posicional las reglas son bastante simples, mientras que la numeración romana requiere reglas algo más elaboradas. Estas reglas son diferentes para cada sistema de numeración considerado, pero una regla común a todos es que para construir números válidos en un sistema de numeración determinado sólo se pueden utilizar los símbolos permitidos en ese sistema. OCTAL En informática a veces se utiliza la numeración octal en vez de la hexadecimal. Tiene la ventaja de que no requiere utilizar otros símbolos diferentes de los dígitos. Sin embargo, para trabajar con bytes o conjuntos de ellos, asumiendo que un byte es una palabra de 8 bits, suele ser más cómodo el sistema hexadecimal, por cuanto todo byte así definido es completamente representable por dos dígitos hexadecimales. DECIMAL Para otros usos de este término, véase Decimal. Este artículo trata sobre parte entera y parte fraccionaria. Para números enteros, esto pasa porque el dominador es menor a diez, véase Sistema de numeración decimal. Se denominan números decimales aquellos que poseen una parte decimal, en oposición a los números enteros que carecen de ella.1 Así, un número x perteneciente a R escrito usando la representación decimal tiene la siguiente expresión: x = a, a_1a_2 \cdots a_n \cdots donde a es un número entero cualquiera, llamado parte entera, separado por una coma o punto de la parte fraccionaria: cada ai con i = 1,2,...,n,... y 0 ≤ ai ≤ 9.2 3 HEXADECIMAL El sistema hexadecimal (a veces abreviado como Hex, no confundir con sistema sexagesimal) es el sistema de numeración posicional que tiene como base el 16. Su uso actual está muy vinculado a la informática y ciencias de la computación, pues los computadores suelen utilizar el byte u octeto como unidad básica de memoria; y, debido a que un byte representa 2^8 valores posibles, y esto puede representarse como 2^8 = 2^4 \cdot 2^4 = 16 \cdot 16 = 1 \cdot 16^2 + 0 \cdot .
El sistema binario, llamado también sistema diádico1 en ciencias de la computación, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1). Es uno de los que se utiliza en las computadoras, debido a que trabajan internamente con dos niveles de voltaje, por lo cual su sistema de numeración natural es el sistema binario (encendido 1, apagado 0. Ejemplo: el sistema binario puede ser representado solo por dos dígitos. Un número binario puede ser representado por cualquier secuencia de bits (dígitos binarios), que suelen representar cualquier mecanismo capaz de usar dos estados mutuamente excluyentes. Las siguientes secuencias de símbolos podrían ser interpretadas como el mismo valor numérico binario: 1 0 1 0 0 1 1 0 1 1 ¦ − ¦ − − ¦ ¦ − ¦ ¦ x o x o o x x o x x y n y n n y y n y y El valor numérico representado en cada caso depende del valor asignado a cada símbolo. En una computadora, los valores numéricos pueden representar dos voltajes diferentes; también pueden indicar polaridades magnéticas sobre un disco magnético. Un "positivo", "sí", o "sobre el estado" no es necesariamente el equivalente al valor numérico de uno; esto depende de la nomenclatura usada. De acuerdo con la representación más habitual, que es usando números arábigos, los números binarios comúnmente son escritos usando los símbolos 0 y 1. Los números binarios se escriben a menudo con subíndices, prefijos o sufijos para indicar su base. SISTEMA DE NUMERACION El sistema numérico decimal que utilizamos para representarlos números, utiliza diez símbolos llamados cifras.Este sistema de numeración es el másusado, tiene como base el número 10, osea que posee 10 dígitos (o simbolos)diferentes (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). BINARIO El sistema binario, en matemáticas e informática, esun sistema de numeración en el que los números serepresentan utilizando solamente las cifras cero y uno(0 y 1) OCTALDebido a que el sistema octal tiene como base 8, que es la tercera potencia de 2, y quedos es la base del sistema binario, es posible establecer un método directo para convertirde la base dos a la base ocho, sin tener que convertir de binario a decimal y luego dedecimal a octal. HEXADECIMAL Debido a que el sistema Hexadecimal tiene comobase 16, que es la cuarta potencia de 2, y que doses la base del sistema binario, es posibleestablecer un método directo para convertir de labase dos a la base diez y seis, sin tener queconvertir de binario a decimal y luego de decimal aHexadecimal DECIMAL
Sistema de numeración binario. El sistema de numeración binario utiliza sólo dos dígitos, el cero (0) y el uno (1). En una cifra binaria, cada dígito tiene distinto valor dependiendo de la posición que ocupe. El valor de cada posición es el de una potencia de base 2, elevada a un exponente igual a la posición del dígito menos uno. Se puede observar que, tal y como ocurría con el sistema decimal, la base de la potencia coincide con la cantidad de dígitos utilizados (2) para representar los números. De acuerdo con estas reglas, el número binario 1011 tiene un valor que se calcula así:
1*23 + 0*22 + 1*21 + 1*20 , es decir:
8 + 0 + 2 + 1 = 11 HEXADECIMAL Debido a que el sistema Hexadecimal tiene comobase 16, que es la cuarta potencia de 2, y que doses la base del sistema binario, es posibleestablecer un método directo para convertir de labase dos a la base diez y seis, sin tener queconvertir de binario a decima
¿QUE ES UN SISTEMA BINARIO? es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1). Es uno de los que se utiliza en las computadoras, debido a que trabajan internamente con dos niveles de voltaje, por lo cual su sistema de numeración natural es el sistema binario. Se basa en la representación de cantidades utilizando los dígitos 1 y 0. Por tanto su base es 2 (número de dígitos del sistema). Cada dígito de un número en este sistema se denomina bit
Qué es un sistema de numeración, binario, Octal, Decimal, Hexadecimal?
SISTEMA DE NUMERACION El sistema numérico decimal que utilizamos para representarlos números, utiliza diez símbolos llamados cifras.Este sistema de numeración es el másusado, tiene como base el número 10, osea que posee 10 dígitos (o simbolos)diferentes (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). BINARIO El sistema binario, en matemáticas e informática, esun sistema de numeración en el que los números serepresentan utilizando solamente las cifras cero y uno(0 y 1) OCTALDebido a que el sistema octal tiene como base 8, que es la tercera potencia de 2, y quedos es la base del sistema binario, es posible establecer un método directo para convertirde la base dos a la base ocho, sin tener que convertir de binario a decimal y luego dedecimal a octal. HEXADECIMAL Debido a que el sistema Hexadecimal tiene comobase 16, que es la cuarta potencia de 2, y que doses la base del sistema binario, es posibleestablecer un método directo para convertir de labase dos a la base diez y seis, sin tener queconvertir de binario a decimal y luego de decimal aHexadecimal DECIMAL
APLICACIONES En 1937, Claude Shannon realizó su tesis doctoral en el MIT, en la cual implementaba el Álgebra de Boole y aritmética binaria utilizando relés y conmutadores por primera vez en la historia. Titulada Un Análisis Simbólico de Circuitos Conmutadores y Relés, la tesis de Shannon básicamente fundó el diseño práctico de circuitos digitales.
En noviembre de 1937, George Stibitz, trabajando por aquel entonces en los Laboratorios Bell, construyó una computadora basada en relés —a la cual apodó "Modelo K" (porque la construyó en una cocina, en inglés "kitchen")— que utilizaba la suma binaria para realizar los cálculos. Los Laboratorios Bell autorizaron un completo programa de investigación a finales de 1938, con Stibitz al mando. El 8 de enero de 1940 terminaron el diseño de una "Calculadora de Números Complejos", la cual era capaz de realizar cálculos con números complejos. En una demostración en la conferencia de la Sociedad Estadounidense de Matemática, el 11 de septiembre de 1940, Stibitz logró enviar comandos de manera remota a la Calculadora de Números Complejos a través de la línea telefónica mediante un teletipo. COMO REALIZAR UNA SUMA? La operación binaria en una operación decimal, resolver la decimal, y después transformar el resultado en un (número) binario. Operamos como en el sistema decimal: comenzamos a sumar desde la derecha, en nuestro ejemplo, 1 + 1 = 10, entonces escribimos 0 en la fila del resultado y llevamos 1 (este "1" se llama acarreo o arrastre). A continuación se suma el acarreo a la siguiente columna: 1 + 0 + 0 = 1.
El sistema binario, llamado también sistema diádico1 en ciencias de la computación, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1). Es uno de los que se utiliza en las computadoras, debido a que trabajan internamente con dos niveles de voltaje, por lo cual su sistema de numeración natural es el sistema binario SISTEMA DE NUMERACION El sistema numérico decimal que utilizamos para representarlos números, utiliza diez símbolos llamados cifras.Este sistema de numeración es el másusado, tiene como base el número 10, osea que posee 10 dígitos (o simbolos)diferentes (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). BINARIO El sistema binario, en matemáticas e informática, esun sistema de numeración en el que los números serepresentan utilizando solamente las cifras cero y uno(0 y 1)
OCTALDebido a que el sistema octal tiene como base 8, que es la tercera potencia de 2, y quedos es la base del sistema binario, es posible establecer un método directo para convertirde la base dos a la base ocho, sin tener que convertir de binario a decimal y luego dedecimal a octal. SISTEMA DE NUMERACIÓN HEXADECIMAL En el sistema hexadecimal los números se representan con dieciséis símbolos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E y F. Se utilizan los caracteres A, B, C, D, E y F representando las cantidades decimales 10, 11, 12, 13, 14 y 15 respectivamente, porque no hay dígitos mayores que 9 en el sistema decimal. El valor de cada uno de estos símbolos depende, como es lógico, de su posición, que se calcula mediante potencias de base 16.
¿Qué es el sistema binario? Es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1). Es uno de los que se utiliza en las computadoras, debido a que trabajan internamente con dos niveles de voltaje, por lo cual su sistema de numeración natural es el sistema binario. ¿Cómo realizar sumas? 1. Alinear los números que desea añadir como lo haría si estuviera agregando números decimales. 2. Comience con los dos números en la columna de la derecha. 3. Suma los números siguiendo las reglas de la suma decimal (1 +0 = 1, 0 +0 = 0) a menos que ambas cifras sean un 1. 4. Agregue 1+1 como "10" si está presente. Escriba "0" y lleve adelante un "1" para sumar a la siguiente columna. 5. Comience en la próxima columna a la izquierda 6. Repita los pasos anteriores. Recuerde que 1 +1 = 10 y 1+1+1 = 11. Recuerde que debe llevar el "1". ¿Qué es un sistema de numeración? Un sistema de numeración es un conjunto de símbolos y reglas de generación que permiten construir todos los números válidos. Un sistema de numeración puede representarse como
Donde: Es el sistema de numeración considerado (p.ej. decimal, binario, etc.). Es el conjunto de símbolos permitidos en el sistema. En el caso del sistema decimal son {0,1,...9}; en el binario son {0,1}; en el octal son {0,1,...7}; en el hexadecimal son {0,1,...9, A, B, C, D, E, F}. Son las reglas que nos indican qué números son válidos en el sistema, y cuáles no. En un sistema de numeración posicional las reglas son bastante simples, mientras que la numeración romana requiere reglas algo más elaboradas. Para indicar en qué sistema de numeración se representa una cantidad se añade como subíndice a la derecha el número de símbolos que se pueden representar en dicho sistema. ¿Qué es un sistema Octal? El sistema numérico en base 8 se llama octal y utiliza los dígitos del 0 al 7. En informática a veces se utiliza la numeración octal en vez de la hexadecimal. Tiene la ventaja de que no requiere utilizar otros símbolos diferentes de los dígitos. Sin embargo, para trabajar con bytes o conjuntos de ellos, asumiendo que un byte es una palabra de 8 bits, suele ser más cómodo el sistema hexadecimal, por cuanto todo byte así definido es completamente representable por dos dígitos hexadecimales. ¿Qué es un sistema Decimal? El sistema de numeración decimal, también llamado sistema decimal, es un sistema de numeración posicional en el que las cantidades se representan utilizando como base aritmética las potencias del número diez. El conjunto de símbolos utilizado (sistema de numeración arábiga) se compone de diez cifras : cero (0) - uno (1) - dos (2) - tres (3) -cuatro (4) - cinco (5) - seis (6) - siete (7) - ocho (8) y nueve (9). ¿Qué es un sistema hexadecimal? El sistema hexadecimal es el sistema de numeración posicional que tiene como base el 16. Su uso actual está muy vinculado a la informática y ciencias de la computación, pues los computadores suelen utilizar el byte u octeto como unidad básica de memoria; y, debido a que un byte representa valores posibles, y esto puede representarse como , que equivale al número en base 16 , dos dígitos hexadecimales corresponden exactamente a un byte. En principio, dado que el sistema usual de numeración es de base decimal y, por ello, sólo se dispone de diez dígitos, se adoptó la convención de usar las seis primeras letras del alfabeto latino para suplir los dígitos que nos faltan. El conjunto de símbolos sería, por tanto, el siguiente:
¿Qué es el sistema binario? Es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1). Es uno de los que se utiliza en las computadoras, debido a que trabajan internamente con dos niveles de voltaje, por lo cual su sistema de numeración natural es el sistema binario. ¿Cómo realizar sumas? 1. Alinear los números que desea añadir como lo haría si estuviera agregando números decimales. 2. Comience con los dos números en la columna de la derecha. 3. Suma los números siguiendo las reglas de la suma decimal (1 +0 = 1, 0 +0 = 0) a menos que ambas cifras sean un 1. 4. Agregue 1+1 como "10" si está presente. Escriba "0" y lleve adelante un "1" para sumar a la siguiente columna. 5. Comience en la próxima columna a la izquierda 6. Repita los pasos anteriores. Recuerde que 1 +1 = 10 y 1+1+1 = 11. Recuerde que debe llevar el "1". ¿Qué es un sistema de numeración? Un sistema de numeración es un conjunto de símbolos y reglas de generación que permiten construir todos los números válidos. Un sistema de numeración puede representarse como
Donde: Es el sistema de numeración considerado (p.ej. decimal, binario, etc.). Es el conjunto de símbolos permitidos en el sistema. En el caso del sistema decimal son {0,1,...9}; en el binario son {0,1}; en el octal son {0,1,...7}; en el hexadecimal son {0,1,...9, A, B, C, D, E, F}. Son las reglas que nos indican qué números son válidos en el sistema, y cuáles no. En un sistema de numeración posicional las reglas son bastante simples, mientras que la numeración romana requiere reglas algo más elaboradas. Para indicar en qué sistema de numeración se representa una cantidad se añade como subíndice a la derecha el número de símbolos que se pueden representar en dicho sistema. ¿Qué es un sistema Octal? El sistema numérico en base 8 se llama octal y utiliza los dígitos del 0 al 7. En informática a veces se utiliza la numeración octal en vez de la hexadecimal. Tiene la ventaja de que no requiere utilizar otros símbolos diferentes de los dígitos. Sin embargo, para trabajar con bytes o conjuntos de ellos, asumiendo que un byte es una palabra de 8 bits, suele ser más cómodo el sistema hexadecimal, por cuanto todo byte así definido es completamente representable por dos dígitos hexadecimales. ¿Qué es un sistema Decimal? El sistema de numeración decimal, también llamado sistema decimal, es un sistema de numeración posicional en el que las cantidades se representan utilizando como base aritmética las potencias del número diez. El conjunto de símbolos utilizado (sistema de numeración arábiga) se compone de diez cifras : cero (0) - uno (1) - dos (2) - tres (3) -cuatro (4) - cinco (5) - seis (6) - siete (7) - ocho (8) y nueve (9). ¿Qué es un sistema hexadecimal? El sistema hexadecimal es el sistema de numeración posicional que tiene como base el 16. Su uso actual está muy vinculado a la informática y ciencias de la computación, pues los computadores suelen utilizar el byte u octeto como unidad básica de memoria; y, debido a que un byte representa valores posibles, y esto puede representarse como , que equivale al número en base 16 , dos dígitos hexadecimales corresponden exactamente a un byte. En principio, dado que el sistema usual de numeración es de base decimal y, por ello, sólo se dispone de diez dígitos, se adoptó la convención de usar las seis primeras letras del alfabeto latino para suplir los dígitos que nos faltan. El conjunto de símbolos sería, por tanto, el siguiente:
¿Qué es un sistema Octal? El sistema numérico en base 8 se llama octal y utiliza los dígitos del 0 al 7. En informática a veces se utiliza la numeración octal en vez de la hexadecimal. Tiene la ventaja de que no requiere utilizar otros símbolos diferentes de los dígitos. Sin embargo, para trabajar con bytes o conjuntos de ellos, asumiendo que un byte es una palabra de 8 bits, suele ser más cómodo el sistema hexadecimal, por cuanto todo byte así definido es completamente representable por dos dígitos hexadecimales. ¿Qué es un sistema Decimal? El sistema de numeración decimal, también llamado sistema decimal, es un sistema de numeración posicional en el que las cantidades se representan utilizando como base aritmética las potencias del número diez. El conjunto de símbolos utilizado (sistema de numeración arábiga) se compone de diez cifras : cero (0) - uno (1) - dos (2) - tres (3) -cuatro (4) - cinco (5) - seis (6) - siete (7) - ocho (8) y nueve (9). ¿Qué es un sistema hexadecimal? El sistema hexadecimal es el sistema de numeración posicional que tiene como base el 16. Su uso actual está muy vinculado a la informática y ciencias de la computación, pues los computadores suelen utilizar el byte u octeto como unidad básica de memoria; y, debido a que un byte representa valores posibles, y esto puede representarse como , que equivale al número en base 16 , dos dígitos hexadecimales corresponden exactamente a un byte. En principio, dado que el sistema usual de numeración es de base decimal y, por ello, sólo se dispone de diez dígitos, se adoptó la convención de usar las seis primeras letras del alfabeto latino para suplir los dígitos que nos faltan. El conjunto de símbolos sería, por tanto, el siguiente:
SISTEMA BINARIO. es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1). Es uno de los que se utiliza en las computadoras, debido a que trabajan internamente con dos niveles de voltaje, por lo cual su sistema de numeración natural es el sistema binario. Se basa en la representación de cantidades utilizando los dígitos 1 y 0. Por tanto su base es 2 (número de dígitos del sistema). Cada dígito de un número en este sistema se denomina bit
¿Qué es un sistema Octal? El sistema numérico en base 8 se llama octal y utiliza los dígitos del 0 al 7. En informática a veces se utiliza la numeración octal en vez de la hexadecimal. Tiene la ventaja de que no requiere utilizar otros símbolos diferentes de los dígitos. Sin embargo, para trabajar con bytes o conjuntos de ellos, asumiendo que un byte es una palabra de 8 bits, suele ser más cómodo el sistema hexadecimal, por cuanto todo byte así definido es completamente representable por dos dígitos hexadecimales. ¿Qué es un sistema Decimal? El sistema de numeración decimal, también llamado sistema decimal, es un sistema de numeración posicional en el que las cantidades se representan utilizando como base aritmética las potencias del número diez. El conjunto de símbolos utilizado (sistema de numeración arábiga) se compone de diez cifras : cero (0) - uno (1) - dos (2) - tres (3) -cuatro (4) - cinco (5) - seis (6) - siete (7) - ocho (8) y nueve (9). ¿Qué es un sistema hexadecimal? El sistema hexadecimal es el sistema de numeración posicional que tiene como base el 16. Su uso actual está muy vinculado a la informática y ciencias de la computación, pues los computadores suelen utilizar el byte u octeto como unidad básica de memoria; y, debido a que un byte representa valores posibles, y esto puede representarse como , que equivale al número en base 16 , dos dígitos hexadecimales corresponden exactamente a un byte. En principio, dado que el sistema usual de numeración es de base decimal y, por ello, sólo se dispone de diez dígitos, se adoptó la convención de usar las seis primeras letras del alfabeto latino para suplir los dígitos que nos faltan SISTEMA BINARIO. es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1). Es uno de los que se utiliza en las computadoras, debido a que trabajan internamente con dos niveles de voltaje, por lo cual su sistema de numeración natural es el sistema binario. Se basa en la representación de cantidades utilizando los dígitos 1 y 0. Por tanto su base es 2 (número de dígitos del sistema)
El sistema binario, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno. Es uno de los que se utiliza en las computadoras, debido a que trabajan internamente con dos niveles de voltaje, por lo cual su sistema de numeración natural es el sistema binario El antiguo matemático indio Pingala presentó la primera descripción que se conoce de un sistema de numeración binario en el siglo tercero antes de nuestra era, lo cual coincidió con su descubrimiento del concepto del número cero. De forma general, binario es un sistema que utiliza sólo dos valores para representar sus cuantías. Es un sistema de base dos. Esos dos valores son el "0" y el "1".
A partir de eso podemos concluir que para el 0 hemos desconectado, o no tenemos señal, y para el 1 hemos conectado o estamos con señal.
El sistema que utilizamos diariamente, es el sistema de base diez, llamado también base decimal. Ese sistema utiliza los números: 0, 1, 2, 3, 4, 5, 6, 7, 8, y 9.
Para las computadoras la base binaria es la ideal.
En las computadoras esos ceros ("0s") y unos ("1s") son llamados dígitos binarios o solamente bit (conjunción de dos palabras de la lengua inglesa binary digit), que es la menor unidad de información de las computadoras. De esta forma, es igual decir dígito "0" y dígito "1", o, bit "0" y bit "1".
El sistema binario, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno. Es uno de los que se utiliza en las computadoras, debido a que trabajan internamente con dos niveles de voltaje, por lo cual su sistema de numeración natural es el sistema binario El antiguo matemático indio Pingala presentó la primera descripción que se conoce de un sistema de numeración binario en el siglo tercero antes de nuestra era, lo cual coincidió con su descubrimiento del concepto del número cero. De forma general, binario es un sistema que utiliza sólo dos valores para representar sus cuantías. Es un sistema de base dos. Esos dos valores son el "0" y el "1".
A partir de eso podemos concluir que para el 0 hemos desconectado, o no tenemos señal, y para el 1 hemos conectado o estamos con señal.
El sistema que utilizamos diariamente, es el sistema de base diez, llamado también base decimal. Ese sistema utiliza los números: 0, 1, 2, 3, 4, 5, 6, 7, 8, y 9.
Para las computadoras la base binaria es la ideal.
En las computadoras esos ceros ("0s") y unos ("1s") son llamados dígitos binarios o solamente bit (conjunción de dos palabras de la lengua inglesa binary digit), que es la menor unidad de información de las computadoras. De esta forma, es igual decir dígito "0" y dígito "1", o, bit "0" y bit "1".
¿QUE ES UN SISTEMA VINARIO ? El sistema binario, llamado también sistema diádico1 en ciencias de la computación, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1).El sistema que utilizamos diariamente, es el sistema de base diez, llamado también base decimal. Ese sistema utiliza los números: 0, 1, 2, 3, 4, 5, 6, 7, 8, y 9. Para las computadoras la base BINARIA es la ideal.En las computadoras esos ceros ("0s") y unos ("1s") son llamados dígitos binarios o solamente bit
Hacerse miembro del fotolog, llenando el formulario con los correspondientes datos personales, mostrados en el posteo anterior. 2. Seleccionar una imagen, que se desee, colocándole un subtitulo, y el comentario que se ansíe colocar. Luego colocar la contraseña propuesta en el paso 1, presionando más tarde aceptar. (Imagen A) 3. Diseñar a gusto las preferencias, con colores de fondo, letras, etc. Para lograrlo se tendrá que ir a MI CUENTA, allí se observara: INFORMACION DE LA CUENTA; PERFIL; PREFERENCIAS; ESTADOS DE LA CUENTA PREMIUM (abajo se explicara que es cada uno). (Imagen B) 4. Agregar a tus amigos a AMIGOS/FAVORITOS, entrando en su fotolog, y hacer clic en la frase dicha. 5. Comentar con lo que pienso o me parezca sobre la imagen y lo dicho en el comentario. 6. Para eliminar un posteo se tendrá que ir a ARCHIVO, haciendo clic sobre la imagen que se desee eliminar (imagen C). Luego se observara una frase que diráborrar y se tendrá que hacer clic en ella colocando luego nuestra contraseña. (Imagen D) 7. Para Cambiar la información de mi cuenta se tendrá que ir tal y como lo dice el nombre a INFORMACION DE LA CUENTA en donde se encontrara la configuración del fotolog, se podrá cambiar, por ejemplo, la contraseña, el titulo del fotolog, entre otras cosas 8. En el perfil se podrá colocar una foto, el e-mail de uno mismo, etc. En síntesis sirve para que el que entre en su fotolog conozca sus intereses, gustos, etc. 9. ¿Cómo abrir y cerrar la cuenta? Es muy sencillo, para abrir se tendrá que ir a la pagina principal de fotolog (www.fotolog.com) y de allí le aparecerá una ventana donde dice que introduzca su nombre de usuario y su contraseña, al colocar ambas se hará enter y automáticamente se le abrirá la pagina de su fotolog (Imagen F). Para cerrar la cuenta se tendrá que ir a cerrar sesión (que se encuentra arriba a la derecha en una esquina).(Imagen E) 10. Por último como cerrar tu cuenta fotolog, para cerrarla se tendrá que ir a MI CUENTA y de allí en información de la cuenta se observara que debajo de todo lo que dice abra una frase que dirá: Para cerrar tu cuenta Fotolog de forma permanente Haz click aquí
Hasta luego espero que les haya gustado y les sirva de algo todos los pasos que les brindamos y les explicamos como usar este maravilloso programa que es muy usado actualmente por miles de personas de todos lados del mundo. Atentamente Mica,Andre.
El sistema binario, llamado también sistema diádico1 en ciencias de la computación, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1). Es uno de los que se utiliza en las computadoras, debido a que trabajan internamente con dos niveles de voltaje, por lo cual su sistema de numeración natural es el sistema binario El antiguo matemático indio Pingala presentó la primera descripción que se conoce de un sistema de numeración binario en el siglo tercero antes de nuestra era, lo cual coincidió con su descubrimiento del concepto del número cero.
El sistema binario moderno fue documentado en su totalidad por Leibniz, en el siglo XVII, en su artículo "Explication de l'Arithmétique Binaire". En él se mencionan los símbolos binarios usados por matemáticos chinos. Leibniz utilizó el 0 y el 1, al igual que el sistema de numeración binario actual.
En 1854, el matemático británico George Boole publicó un artículo que marcó un antes y un después, detallando un sistema de lógica que terminaría denominándose Álgebra de Boole. Dicho sistema desempeñaría un papel fundamental en el desarrollo del sistema binario actual, particularmente en el desarrollo de circuitos electrónicos.
¿QUE ES UN SISTEMA VINARIO ? El sistema binario, llamado también sistema diádico1 en ciencias de la computación, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1).El sistema que utilizamos diariamente, es el sistema de base diez, llamado también base decimal. Ese sistema utiliza los números: 0, 1, 2, 3, 4, 5, 6, 7, 8, y 9. Para las computadoras la base BINARIA es la ideal.En las computadoras esos ceros ("0s") y unos ("1s") son llamados dígitos binarios o solamente bit
El sistema binario, llamado también sistema diádico1 en ciencias de la computación, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1). Es uno de los que se utiliza en las computadoras, debido a que trabajan internamente con dos niveles de voltaje, por lo cual su sistema de numeración natural es el sistema binario El antiguo matemático indio Pingala presentó la primera descripción que se conoce de un sistema de numeración binario en el siglo tercero antes de nuestra era, lo cual coincidió con su descubrimiento del concepto del número cero.
Una serie completa de 8 trigramas y 64 hexagramas (análogos a 3 bits) y números binarios de 6 bits eran conocidos en la antigua China en el texto clásico del I Ching. Series similares de combinaciones binarias también han sido utilizadas en sistemas de adivinación tradicionales africanos, como el Ifá, así como en la geomancia medieval occidental.
Un arreglo binario ordenado de los hexagramas del I Ching, representando la secuencia decimal de 0 a 63, y un método para generar el mismo fue desarrollado por el erudito y filósofo Chino Adgart en el siglo XI.
En 1605 Francis Bacon habló de un sistema por el cual las letras del alfabeto podrían reducirse a secuencias de dígitos binarios, las cuales podrían ser codificadas como variaciones apenas visibles en la fuente de cualquier texto arbitrario.
El sistema binario moderno fue documentado en su totalidad por Leibniz, en el siglo XVII, en su artículo "Explication de l'Arithmétique Binaire". En él se mencionan los símbolos binarios usados por matemáticos chinos. Leibniz utilizó el 0 y el 1, al igual que el sistema de numeración binario actual.
En 1854, el matemático británico George Boole publicó un artículo que marcó un antes y un después, detallando un sistema de lógica que terminaría denominándose Álgebra de Boole. Dicho sistema desempeñaría un papel fundamental en el desarrollo del sistema binario actual, particularmente en el desarrollo de circuitos electrónicos.
El sistema binario, llamado también sistema diádico1 en ciencias de la computación, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1). Es uno de los que se utiliza en las computadoras, debido a que trabajan internamente con dos niveles de voltaje, por lo cual su sistema de numeración natural es el sistema binario
ResponderEliminarEl antiguo matemático indio Pingala presentó la primera descripción que se conoce de un sistema de numeración binario en el siglo tercero antes de nuestra era, lo cual coincidió con su descubrimiento del concepto del número cero.
Una serie completa de 8 trigramas y 64 hexagramas (análogos a 3 bits) y números binarios de 6 bits eran conocidos en la antigua China en el texto clásico del I Ching. Series similares de combinaciones binarias también han sido utilizadas en sistemas de adivinación tradicionales africanos, como el Ifá, así como en la geomancia medieval occidental.
Un arreglo binario ordenado de los hexagramas del I Ching, representando la secuencia decimal de 0 a 63, y un método para generar el mismo fue desarrollado por el erudito y filósofo Chino Adgart en el siglo XI.
En 1605 Francis Bacon habló de un sistema por el cual las letras del alfabeto podrían reducirse a secuencias de dígitos binarios, las cuales podrían ser codificadas como variaciones apenas visibles en la fuente de cualquier texto arbitrario.
El sistema binario moderno fue documentado en su totalidad por Leibniz, en el siglo XVII, en su artículo "Explication de l'Arithmétique Binaire". En él se mencionan los símbolos binarios usados por matemáticos chinos. Leibniz utilizó el 0 y el 1, al igual que el sistema de numeración binario actual.
En 1854, el matemático británico George Boole publicó un artículo que marcó un antes y un después, detallando un sistema de lógica que terminaría denominándose Álgebra de Boole. Dicho sistema desempeñaría un papel fundamental en el desarrollo del sistema binario actual, particularmente en el desarrollo de circuitos electrónicos.
ResponderEliminarSISTEMAS DE NUMERACIÓN
binario, octal y hexadecimal
Sistemas de numeración
Sistema de numeración decimal
Sistema de numeración binario
Conversión entre números decimales y binarios
El tamaño de las cifras binarias
Conversión de binario a decimal
Sistema de numeración octal
Conversión de un número decimal a octal
Conversión octal a decimal
Sistema de numeración hexadecimal
Conversión de números binarios a octales y viceversa
Conversión de números binarios a hexadecimales y viceversa
QUE ES EL SISTEMA BINARIO
ResponderEliminarUn arreglo binario ordenado de los hexagramas del I Ching, representando la secuencia decimal de 0 a 63, y un método para generar el mismo fue desarrollado por el erudito y filósofo Chino Adgart en el siglo XI.
El sistema binario moderno fue documentado en su totalidad por Leibniz, en el siglo XVII, en su artículo "Explication de l'Arithmétique Binaire". En él se mencionan los símbolos binarios usados por matemáticos chinos. Leibniz utilizó el 0 y el 1, al igual que el sistema de numeración binario actual.
SISTEMA DE MUMERACION
un sistema de numeración es un conjunto de símbolos y reglas de generación que permiten construir todos los números válidos.es el sistema de numeración considerado (p.ej. decimal, binario, etc.).
S\, es el conjunto de símbolos permitidos en el sistema. En el caso del sistema decimal son {0,1,...9}; en el binario son {0,1}; en el octal son {0,1,...7}; en el hexadecimal son {0,1,...9,A,B,C,D,E,F}. son las reglas que nos indican qué números son válidos en el sistema, y cuáles no. En un sistema de numeración posicional las reglas son bastante simples, mientras que la numeración romana requiere reglas algo más elaboradas.
Estas reglas son diferentes para cada sistema de numeración considerado, pero una regla común a todos es que para construir números válidos en un sistema de numeración determinado sólo se pueden utilizar los símbolos permitidos en ese sistema.
OCTAL
En informática a veces se utiliza la numeración octal en vez de la hexadecimal. Tiene la ventaja de que no requiere utilizar otros símbolos diferentes de los dígitos. Sin embargo, para trabajar con bytes o conjuntos de ellos, asumiendo que un byte es una palabra de 8 bits, suele ser más cómodo el sistema hexadecimal, por cuanto todo byte así definido es completamente representable por dos dígitos hexadecimales.
DECIMAL
Para otros usos de este término, véase Decimal.
Este artículo trata sobre parte entera y parte fraccionaria. Para números enteros, esto pasa porque el dominador es menor a diez, véase Sistema de numeración decimal.
Se denominan números decimales aquellos que poseen una parte decimal, en oposición a los números enteros que carecen de ella.1 Así, un número x perteneciente a R escrito usando la representación decimal tiene la siguiente expresión:
x = a, a_1a_2 \cdots a_n \cdots
donde a es un número entero cualquiera, llamado parte entera, separado por una coma o punto de la parte fraccionaria: cada ai con i = 1,2,...,n,... y 0 ≤ ai ≤ 9.2 3
HEXADECIMAL
El sistema hexadecimal (a veces abreviado como Hex, no confundir con sistema sexagesimal) es el sistema de numeración posicional que tiene como base el 16. Su uso actual está muy vinculado a la informática y ciencias de la computación, pues los computadores suelen utilizar el byte u octeto como unidad básica de memoria; y, debido a que un byte representa 2^8 valores posibles, y esto puede representarse como 2^8 = 2^4 \cdot 2^4 = 16 \cdot 16 = 1 \cdot 16^2 + 0 \cdot 16^1 + 0 \cdot 16^0, que equivale al número en base 16 100_{16}, dos dígitos hexadecimales corresponden exactamente a un byte.En principio, dado que el sistema usual de numeración es de base decimal y, por ello, sólo se dispone de diez dígitos, se adoptó la convención de usar las seis primeras letras del alfabeto latino para suplir los dígitos que nos faltan. El conjunto de símbolos sería, por tanto, el siguiente:Se debe notar que A = 10, B = 11, C = 12, D = 13, E = 14 y F = 15. En ocasiones se emplean letras minúsculas en lugar de mayúsculas. Como en cualquier sistema de numeración posicional, el valor numérico de cada dígito es alterado dependiendo de su posición en la cadena de dígitos, quedando multiplicado por una cierta potencia de la base del sistema, que en este caso es 16. Por ejemplo: 3E0A16 = 3×163 + E×162 + 0×161 + A×160 = 3×4096 + 14×256 + 0×16 + 10×1 = 15882.El sistema hexadecimal actual fue introducido en el ámbito de la computación por primera vez por IBM en 1963. Una representación anterior, con 0–9 y u–z, fue usada en 1956 por la computadora Bendix G-15.
¿QUE ES UN SISTEMA BINARIO?
ResponderEliminarEl sistema binario, llamado también sistema diádico en ciencias de la computación, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1). Es uno de los que se utiliza en las computadoras, debido a que trabajan internamente con dos niveles de voltaje, por lo cual su sistema de numeración natural es el sistema binario (encendido 1, apagado 0). El sistema binario, llamado también sistema diádico en ciencias de la computación, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1). Es uno de los que se utiliza en las computadoras, debido a que trabajan internamente con dos niveles de voltaje, por lo cual su sistema de numeración natural es el sistema binario (encendido 1, apagado 0).
¿QUE ES UN SISTEMA DE NUMERACION BINARIO, OCTAL, DECIMAL Y HEXADECIMAL?
Sistema de numeración binario.
El sistema de numeración binario utiliza sólo dos dígitos, el cero (0) y el uno (1).
En una cifra binaria, cada dígito tiene distinto valor dependiendo de la posición que ocupe. El valor de cada posición es el de una potencia de base 2, elevada a un exponente igual a la posición del dígito menos uno, además la base de la potencia coincide con la cantidad de dígitos utilizados (2) para representar los números.
Sistema de numeración decimal:
El sistema de numeración que utiliza¬mos habitualmente es el decimal, que se compone de diez símbolos o dígi¬tos (0, 1, 2, 3, 4, 5, 6, 7, 8 y 9) a los que otorga un valor dependiendo de la posición que ocupen en la cifra: unidades, decenas, centenas, millares, etc.
El valor de cada dígito está asociado al de una potencia de base 10, número que coincide con la cantidad de símbolos o dígitos del sistema decimal, y un exponente igual a la posición que ocupa el dígito menos uno, contando desde la de¬recha.
Sistema de numeración octal
En el sistema de numeración octal, los números se representan mediante ocho dígitos diferentes: 0, 1, 2, 3, 4, 5, 6 y 7. Cada dígito tiene, naturalmente, un valor distinto dependiendo del lu¬gar que ocupen. El valor de cada una de las posiciones viene determinado por las potencias de base 8.
Sistema de numeración hexadecimal
En el sistema hexadecimal los números se representan con dieciséis símbolos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E y F. Se utilizan los caracteres A, B, C, D, E y F representando las cantidades decima¬les 10, 11, 12, 13, 14 y 15 respectivamente, porque no hay dígitos mayores que 9 en el sistema decimal. El valor de cada uno de estos símbolos depende, como es lógico, de su posición, que se calcula mediante potencias de base 16.
SISTEMA BINARIO
ResponderEliminarEl sistema binario, llamado también sistema diádico en ciencias de la computación, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1) es decir solo 2 dígitos, esto en informática tiene mucha importancia ya que las computadoras trabajan internamente con 2 niveles de Tensión lo que hace que su sistema de numeración natural sea binario, por ejemplo 1 para encendido y 0 para apagado.. Es uno de los que se utiliza en las computadoras, debido a que trabajan internamente con dos niveles de voltaje, por lo cual su sistema de numeración natural es el sistema binario. También se utiliza en electrónica y en electricidad (encendido o apagado, activado o desactivado).
SISTEMAS DE NUMERACIÓN
binario, octal y hexadecimal
• Sistemas de numeración
Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar datos numéricos. Los sistemas de numeración actuales son sistemas posicionales, que se caracterizan porque un símbolo tiene distinto valor según la posición que ocupa en la cifra.
• Sistema de numeración decimal:
El sistema de numeración que utilizamos habitualmente es el decimal, que se compone de diez símbolos o dígitos (0, 1, 2, 3, 4, 5, 6, 7, 8 y 9) a los que otorga un valor dependiendo de la posición que ocupen en la cifra: unidades, decenas, centenas, millares, etc.
El valor de cada dígito está asociado al de una potencia de base 10, número que coincide con la cantidad de símbolos o dígitos del sistema decimal, y un exponente igual a la posición que ocupa el dígito menos uno, contando desde la derecha.
• Sistema de numeración binario.
El sistema de numeración binario utiliza sólo dos dígitos, el cero (0) y el uno (1).
En una cifra binaria, cada dígito tiene distinto valor dependiendo de la posición que ocupe. El valor de cada posición es el de una potencia de base 2, elevada a un exponente igual a la posición del dígito menos uno. Se puede observar que, tal y como ocurría con el sistema decimal, la base de la potencia coincide con la cantidad de dígitos utilizados (2) para representar los números.
• Sistema de numeración octal
El inconveniente de la codificación binaria es que la representación de algunos números resulta muy larga. Por este motivo se utilizan otros sistemas de numeración que.
En el sistema de numeración octal, los números se representan mediante ocho dígitos diferentes: 0, 1, 2, 3, 4, 5, 6 y 7. Cada dígito tiene, naturalmente, un valor distinto dependiendo del lu¬gar que ocupen. El valor de cada una de las posiciones viene determinado por las potencias de base 8.
• Sistema de numeración hexadecimal
En el sistema hexadecimal los números se representan con dieciséis símbolos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E y F. Se utilizan los caracteres A, B, C, D, E y F representando las cantidades decimales 10, 11, 12, 13, 14 y 15 respectivamente, porque no hay dígitos mayores que 9 en el sistema decimal. El valor de cada uno de estos símbolos depende, como es lógico, de su posición, que se calcula mediante potencias de base 16.
Sistema de numeración binario.
ResponderEliminarEl sistema de numeración binario utiliza sólo dos dígitos, el cero (0) y el uno (1).
En una cifra binaria, cada dígito tiene distinto valor dependiendo de la posición que ocupe. El valor de cada posición es el de una potencia de base 2, elevada a un exponente igual a la posición del dígito menos uno. Se puede observar que, tal y como ocurría con el sistema decimal, la base de la potencia coincide con la cantidad de dígitos utilizados (2) para representar los números.
Sistema de numeración octal
El inconveniente de la codificación binaria es que la representación de algunos números resulta muy larga. Por este motivo se utilizan otros sistemas de numeración que resulten más cómodos de escribir: el sistema octal y el sistema hexadecimal. Afortunadamente, resulta muy fácil convertir un número binario a octal o a hexadecimal.
En el sistema de numeración octal, los números se representan mediante ocho dígitos diferentes: 0, 1, 2, 3, 4, 5, 6 y 7. Cada dígito tiene, naturalmente, un valor distinto dependiendo del lugar que ocupen. El valor de cada una de las posiciones viene determinado por las potencias de base 8.
Por ejemplo, el número octal 2738 tiene un valor que se calcula así:
2*83 + 7*82 + 3*81 = 2*512 + 7*64 + 3*8 = 149610
2738 = 149610
Conversión de binario a decimal
El proceso para convertir un número del sistema binario al decimal es aún más sencillo; basta con desarrollar el número, teniendo en cuenta el valor de cada dígito en su posición, que es el de una potencia de 2, cuyo exponente es 0 en el bit situado más a la derecha, y se incrementa en una unidad según vamos avanzando posiciones hacia la izquierda.
Por ejemplo, para convertir el número binario 10100112 a decimal, lo desarrollamos teniendo en cuenta el valor de cada bit:
1*26 + 0*25 + 1*24 + 0*23 + 0*22 + 1*21 + 1*20 = 83
10100112 = 8310
Sistema de numeración hexadecimal
En el sistema hexadecimal los números se representan con dieciséis símbolos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E y F. Se utilizan los caracteres A, B, C, D, E y F representando las cantidades decimales 10, 11, 12, 13, 14 y 15 respectivamente, porque no hay dígitos mayores que 9 en el sistema decimal. El valor de cada uno de estos símbolos depende, como es lógico, de su posición, que se calcula mediante potencias de base 16.
Calculemos, a modo de ejemplo, el valor del número hexadecimal 1A3F16:
1A3F16 = 1*163 + A*162 + 3*161 + F*160
1*4096 + 10*256 + 3*16 + 15*1 = 6719
1A3F16 = 671910
.... ya profee
Sistema de numeración binario
ResponderEliminarConversión de binario a decimal.- El sistema de numeración binario u un sistema de posición donde cada dígito binario (bit) tiene un valor basado en su posición relativa al LSB. Cualquier número binario puede convenirse a su equivalente decimal, simplemente sumando en el número binario las diversas posiciones que contenga un 1. Por ejemplo:
1 1 1 0 1 12 de binario a decimal
1 x 25 + 1 x 24 + 1 x 23 + 0 x 22 + 1 x 2 + 1 = 6910
Conversión de decimal a binario.- Existen dos maneras de convenir un número decimal entero a su representación equivalente en el sistema binario. El primer método es inverso al proceso descrito anteriormente. El número decimal se expresa simplemente como una suma de potencias de 2 y luego los unos y los ceros se escriben en las posiciones adecuadas de los bits.
Sistema de numeración octal
El sistema de numeración octal es un sistema de numeración en base 8, una base que es potencia exacta de 2 o de la numeración binaria. Esta característica hace que la conversión a binario o viceversa sea bastante simple. El sistema octal usa 8 dígitos (0, 1, 2, 3, 4, 5, 6, 7) y tienen el mismo valor que en el sistema de numeración decimal.
El teorema fundamental aplicado al sistema octal sería el siguiente:
Sistema de numeración decimal
El sistema de numeración decimal, también llamado sistema decimal, es un sistema de numeración posicional en el que las cantidades se representan utilizando como base aritmética las potencias del número diez. El conjunto de símbolos utilizado (sistema de numeración arábiga) se compone de diez cifras : cero (0) - uno (1) - dos (2) - tres (3) - cuatro (4) - cinco (5) - seis (6) - siete (7) - ocho (8) y nueve (9).
Excepto en ciertas culturas, es el sistema usado habitualmente en todo el mundo y en todas las áreas que requieren de un sistema de numeración. Sin embargo hay ciertas técnicas, como por ejemplo en la informática, donde se utilizan sistemas de numeración adaptados al método del binario o el hexadecimal.
SISTEMA BINARIO
ResponderEliminarEl sistema binario, llamado también sistema diádico en ciencias de la computación, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1). Es uno de los que se utiliza en las computadoras, debido a que trabajan internamente con dos niveles de voltaje, por lo cual su sistema de numeración natural es el sistema binario (encendido 1, apagado 0). Un número binario puede ser representado por cualquier secuencia de bits (dígitos binarios), que suelen representar cualquier mecanismo capaz de usar dos estados mutuamente excluyentes. Las siguientes secuencias de símbolos podrían ser interpretadas como el mismo valor numérico binario:
1 0 1 0 0 1 1 0 1 1
¦ − ¦ − − ¦ ¦ − ¦ ¦
x o x o o x x o x x
y n y n n y y n y y
SISTEMA DE NUMERACIÓN BINARIO.
El sistema de numeración binario utiliza sólo dos dígitos, el cero (0) y el uno (1).
En una cifra binaria, cada dígito tiene distinto valor dependiendo de la posición que ocupe. El valor de cada posición es el de una potencia de base 2, elevada a un exponente igual a la posición del dígito menos uno. Se puede observar que, tal y como ocurría con el sistema decimal, la base de la potencia coincide con la cantidad de dígitos utilizados (2) para representar los números.
SISTEMA DE NUMERACIÓN OCTAL
El inconveniente de la codificación binaria es que la representación de algunos números resulta muy larga. Por este motivo se utilizan otros sistemas de numeración que resulten más cómodos de escribir: el sistema octal y el sistema hexadecimal. Afortunadamente, resulta muy fácil convertir un número binario a octal o a hexadecimal.
En el sistema de numeración octal, los números se representan mediante ocho dígitos diferentes: 0, 1, 2, 3, 4, 5, 6 y 7. Cada dígito tiene, naturalmente, un valor distinto dependiendo del lugar que ocupen. El valor de cada una de las posiciones viene determinado por las potencias de base 8.
SISTEMA DE NUMERACIÓN HEXADECIMAL
En el sistema hexadecimal los números se representan con dieciséis símbolos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E y F. Se utilizan los caracteres A, B, C, D, E y F representando las cantidades decimales 10, 11, 12, 13, 14 y 15 respectivamente, porque no hay dígitos mayores que 9 en el sistema decimal. El valor de cada uno de estos símbolos depende, como es lógico, de su posición, que se calcula mediante potencias de base 16. http://es.wikipedia.org/wiki/Sistema_binario http://platea.pntic.mec.es/~lgonzale/tic/binarios/numeracion.html#Sistema_de_numeraci%F3n_hexadecimal
En ciencias de la computación, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1). Es uno de los que se utiliza en las computadoras, debido a que trabajan internamente con dos niveles de voltaje, por lo cual su sistema de numeración natural es el sistema binario. Se basa en la representación de cantidades utilizando los dígitos 1 y 0. Por tanto su base es 2 (número de dígitos del sistema). Cada dígito de un número en este sistema se denomina bit (contracción de binary digit).
ResponderEliminarPor ejemplo el número en binario 1001 es de 4 bits.
Según el orden ascendente de los números en decimal tendríamos un número equivalente en binario:
El 0 en decimal sería el 0 en binario
El 1 en decimal sería el 1 en binario
El 2 en decimal sería el 10 en binario El 3 en decimal sería el 11 en binario
El 4 en decimal sería el 100 en binario
Para hacer la conversión de decimal a binario, hay que ir dividiendo el número decimal entre dos y anotar en una columna a la derecha el resto (un 0 si el resultado de la división es par y un 1 si es impar). Para sacar la cifra en binario cogeremos el último cociente (siempre será 1) y todos los restos de las divisiones de abajo arriba, orden ascendente.
SISTEMA DE NUMERACION
ResponderEliminarUn sistema de numeración es un conjunto de símbolos y reglas que permi¬ten representar datos numéricos. Los sistemas de numeración actuales son sistemas posicionales, que se caracterizan porque un símbo¬lo tiene distinto valor según la posición que ocupa en la cifra.
SISTEM DE NUMERACION BINARIO
El sistema de numeración binario utiliza sólo dos dígitos, el cero (0) y el uno (1).
En una cifra binaria, cada dígito tiene distinto valor dependiendo de la posición que ocupe. El valor de cada posición es el de una potencia de base 2, elevada a un exponente igual a la posición del dígito menos uno. Se puede observar que, tal y como ocurría con el sistema decimal, la base de la potencia coincide con la cantidad de dígitos utilizados (2) para representar los números.
De acuerdo con estas reglas, el número binario 1011 tiene un valor que se calcula así:
1*23 + 0*22 + 1*21 + 1*20 , es decir:
8 + 0 + 2 + 1 = 11
y para expresar que ambas cifras describen la misma cantidad lo escribimos así:
10112 = 1110
SISTEMA DE NUMERCION OCTAL
Representar un número en Sistema Binario puede ser bastante difícil de leer, así que se creó el sistema octal. En el Sistema de Numeración Octal (base 8), sólo se utilizan 8 cifras (0, 1, 2, 3, 4, 5, 6, 7)
Este Sistema de numeración una vez que se llega a la cuenta 7 se pasa a 10, etc.. La cuenta hecha en octal: 0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, .....
Se puede observar que en este sistema numérico no existen los números: 8 y 9.
Para pasar del un Sistema Binario al Sistema Octal se utiliza el siguiente método:
- Se divide el número binario en grupos de 3 empezando por la derecha. Si al final queda un grupo de 2 o 1 dígitos, se completa el grupo de 3 con ceros (0) al lado izquierdo.
- Se convierte cada grupo en su equivalente en el Sistema octal y se reemplaza.
SISTEMA DE NUMERACION DECIMAL
En nuestro sistema de numeración empleamos diez cifras diferentes para expresar los valores. Es un sistema posicional porque el valor de una cifra depende de su posición, cada puesto más avanzado hacia la izquierda en que esté una cifra su valor es diez veces más.
En un número natural identificamos sus cifras desde la derecha:
unidades, vale el valor que representa,
decenas, vale 10 veces su valor,
centenas, vale 100 veces su valor,
unidades de millar, vale 1000 veces su valor,
decenas de millar, vale 10000 veces su valor,
centenas de millar, vale 100000 veces su valor,
unidades de millón, vale 1000000 veces su valor,
decenas de millón, vale 10000000 veces su valor,
centenas de millón, vale 100000000 veces su valor,
SISTEMA DE NUMERACION HEXADECIMAL
El sistema hexadecimal (a veces abreviado como Hex, no confundir con sistema sexagesimal) es el sistema de numeración posicional que tiene como base el 16. Su uso actual está muy vinculado a la informática y ciencias de la computación, pues loscomputadores suelen utilizar el byte u octeto como unidad básica de memoria; y, debido a que un byte representa valores posibles, y esto puede representarse como , que equivale al número en base 16 , dos dígitos hexadecimales corresponden exactamente a un byte.
En principio, dado que el sistema usual de numeración es de base decimal y, por ello, sólo se dispone de diez dígitos, se adoptó la convención de usar las seis primeras letras del alfabeto latino para suplir los dígitos que nos faltan. El conjunto de símbolos sería, por tanto, el siguiente:
Se debe notar que A = 10, B = 11, C = 12, D = 13, E = 14 y F = 15. En ocasiones se emplean letras minúsculas en lugar de mayúsculas. Como en cualquier sistema de numeración posicional, el valor numérico de cada dígito es alterado dependiendo de su posición en la cadena de dígitos, quedando multiplicado por una cierta potencia de la base del sistema, que en este caso es 16. Por ejemplo: 3E0A16 = 3×163 + E×162 + 0×161 + A×160 = 3×4096 + 14×256 + 0×16 + 10×1 = 15882.
El sistema binario, llamado también sistema diádico1 en ciencias de la computación, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1). Es uno de los que se utiliza en las computadoras, debido a que trabajan internamente con dos niveles de voltaje, por lo cual su sistema de numeración natural es el sistema binario (encendido 1, apagado 0.
ResponderEliminarEjemplo: el sistema binario puede ser representado solo por dos dígitos.
Un número binario puede ser representado por cualquier secuencia de bits (dígitos binarios), que suelen representar cualquier mecanismo capaz de usar dos estados mutuamente excluyentes. Las siguientes secuencias de símbolos podrían ser interpretadas como el mismo valor numérico binario:
1 0 1 0 0 1 1 0 1 1
¦ − ¦ − − ¦ ¦ − ¦ ¦
x o x o o x x o x x
y n y n n y y n y y
El valor numérico representado en cada caso depende del valor asignado a cada símbolo. En una computadora, los valores numéricos pueden representar dos voltajes diferentes; también pueden indicar polaridades magnéticas sobre un disco magnético. Un "positivo", "sí", o "sobre el estado" no es necesariamente el equivalente al valor numérico de uno; esto depende de la nomenclatura usada.
De acuerdo con la representación más habitual, que es usando números arábigos, los números binarios comúnmente son escritos usando los símbolos 0 y 1. Los números binarios se escriben a menudo con subíndices, prefijos o sufijos para indicar su base.
SISTEMA DE NUMERACION
El sistema numérico decimal que utilizamos para representarlos números, utiliza diez símbolos llamados cifras.Este sistema de numeración es el másusado, tiene como base el número 10, osea que posee 10 dígitos (o simbolos)diferentes (0, 1, 2, 3, 4, 5, 6, 7, 8, 9).
BINARIO
El sistema binario, en matemáticas e informática, esun sistema de numeración en el que los números serepresentan utilizando solamente las cifras cero y uno(0 y 1)
OCTALDebido a que el sistema octal tiene como base 8, que es la tercera potencia de 2, y quedos es la base del sistema binario, es posible establecer un método directo para convertirde la base dos a la base ocho, sin tener que convertir de binario a decimal y luego dedecimal a octal.
HEXADECIMAL
Debido a que el sistema Hexadecimal tiene comobase 16, que es la cuarta potencia de 2, y que doses la base del sistema binario, es posibleestablecer un método directo para convertir de labase dos a la base diez y seis, sin tener queconvertir de binario a decimal y luego de decimal aHexadecimal
DECIMAL
Se divide el número del sistema decimal entre 8, cuyo resultado entero se vuelve a dividirentre 8, y así sucesivamente hasta que el dividendo sea menor que el divisor, 8
-Que es es un sistema binario?
ResponderEliminares un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1). Es uno de los que se utiliza en las computadoras, debido a que trabajan internamente con dos niveles de voltaje, por lo cual su sistema de numeración natural es el sistema binario.
-Sistemas de numeración
Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar datos numéricos. Los sistemas de numeración actuales son sistemas posicionales, que se caracterizan porque un símbolo tiene distinto valor según la posición que ocupa en la cifra.
-Sistema de numeración binario.
El sistema de numeración binario utiliza sólo dos dígitos, el cero (0) y el uno (1).
En una cifra binaria, cada dígito tiene distinto valor dependiendo de la posición que ocupe. El valor de cada posición es el de una potencia de base 2, elevada a un exponente igual a la posición del dígito menos uno. Se puede observar que, tal y como ocurría con el sistema decimal, la base de la potencia coincide con la cantidad de dígitos utilizados (2) para representar los números.
De acuerdo con estas reglas, el número binario 1011 tiene un valor que se calcula así:
1*23 + 0*22 + 1*21 + 1*20 , es decir:
8 + 0 + 2 + 1 = 11
-Sistema de numeración octal
El inconveniente de la codificación binaria es que la representación de algunos números resulta muy larga. Por este motivo se utilizan otros sistemas de numeración que resulten más cómodos de escribir: el sistema octal y el sistema hexadecimal. Afortunadamente, resulta muy fácil convertir un número binario a octal o a hexadecimal.
En el sistema de numeración octal, los números se representan mediante ocho dígitos diferentes: 0, 1, 2, 3, 4, 5, 6 y 7. Cada dígito tiene, naturalmente, un valor distinto dependiendo del lugar que ocupen. El valor de cada una de las posiciones viene determinado por las potencias de base 8.
Por ejemplo, el número octal 2738 tiene un valor que se calcula así:
2*83 + 7*82 + 3*81 = 2*512 + 7*64 + 3*8 = 149610
2738 = 149610
-Sistema de numeracion decimal
El sistema de numeración decimal, también llamado sistema decimal, es un sistema de numeración posicional en el que las cantidades se representan utilizando como base aritmética las potencias del número diez. El conjunto de símbolos utilizado (sistema de numeración arábiga) se compone de diez cifras : cero (0) - uno (1) - dos (2) - tres (3) - cuatro (4) - cinco (5) - seis (6) - siete (7) - ocho (8) y nueve (9).
-Sistema de numeración hexadecimal
En el sistema hexadecimal los números se representan con dieciséis símbolos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E y F. Se utilizan los caracteres A, B, C, D, E y F representando las cantidades decimales 10, 11, 12, 13, 14 y 15 respectivamente, porque no hay dígitos mayores que 9 en el sistema decimal. El valor de cada uno de estos símbolos depende, como es lógico, de su posición, que se calcula mediante potencias de base 16.
Calculemos, a modo de ejemplo, el valor del número hexadecimal 1A3F16:
1A3F16 = 1*163 + A*162 + 3*161 + F*160
1*4096 + 10*256 + 3*16 + 15*1 = 6719
1A3F16 = 671910
ResponderEliminarl sistema binario, llamado también sistema diádico[1] en ciencias de la computación, es un sistema de numeración en el que losnúmeros se representan utilizando solamente las cifras cero y uno (0 y 1). Es uno de los que se utiliza en las computadoras, debido a que trabajan internamente con dos niveles devoltaje, por lo cual su sistema de numeración natural es el sistema binario (encendido 1, apagado 0)
SISTEMAS DE NUMERACIÓNbinario, octal y hexadecimalSistemas de numeraciónSistema de numeración decimalSistema de numeración binarioConversión entre números decimales y binariosEl tamaño de las cifras binariasConversión de binario a decimalSistema de numeración octalConversión de un número decimal a octalConversión octal a decimalSistema de numeración hexadecimalConversión de números binarios a octales y viceversaConversión de números binarios a hexadecimales y viceversa
QUE ES EL SISTEMA BINARIO
ResponderEliminarUn arreglo binario ordenado de los hexagramas del I Ching, representando la secuencia decimal de 0 a 63, y un método para generar el mismo fue desarrollado por el erudito y filósofo Chino Adgart en el siglo XI.
El sistema binario moderno fue documentado en su totalidad por Leibniz, en el siglo XVII, en su artículo "Explication de l'Arithmétique Binaire". En él se mencionan los símbolos binarios usados por matemáticos chinos. Leibniz utilizó el 0 y el 1, al igual que el sistema de numeración binario actual.
SISTEMA DE MUMERACION
un sistema de numeración es un conjunto de símbolos y reglas de generación que permiten construir todos los números válidos.es el sistema de numeración considerado (p.ej. decimal, binario, etc.).
S\, es el conjunto de símbolos permitidos en el sistema. En el caso del sistema decimal son {0,1,...9}; en el binario son {0,1}; en el octal son {0,1,...7}; en el hexadecimal son {0,1,...9,A,B,C,D,E,F}. son las reglas que nos indican qué números son válidos en el sistema, y cuáles no. En un sistema de numeración posicional las reglas son bastante simples, mientras que la numeración romana requiere reglas algo más elaboradas.
Estas reglas son diferentes para cada sistema de numeración considerado, pero una regla común a todos es que para construir números válidos en un sistema de numeración determinado sólo se pueden utilizar los símbolos permitidos en ese sistema.
OCTAL
En informática a veces se utiliza la numeración octal en vez de la hexadecimal. Tiene la ventaja de que no requiere utilizar otros símbolos diferentes de los dígitos. Sin embargo, para trabajar con bytes o conjuntos de ellos, asumiendo que un byte es una palabra de 8 bits, suele ser más cómodo el sistema hexadecimal, por cuanto todo byte así definido es completamente representable por dos dígitos hexadecimales.
DECIMAL
Para otros usos de este término, véase Decimal.
Este artículo trata sobre parte entera y parte fraccionaria. Para números enteros, esto pasa porque el dominador es menor a diez, véase Sistema de numeración decimal.
Se denominan números decimales aquellos que poseen una parte decimal, en oposición a los números enteros que carecen de ella.1 Así, un número x perteneciente a R escrito usando la representación decimal tiene la siguiente expresión:
x = a, a_1a_2 \cdots a_n \cdots
donde a es un número entero cualquiera, llamado parte entera, separado por una coma o punto de la parte fraccionaria: cada ai con i = 1,2,...,n,... y 0 ≤ ai ≤ 9.2 3
HEXADECIMAL
El sistema hexadecimal (a veces abreviado como Hex, no confundir con sistema sexagesimal) es el sistema de numeración posicional que tiene como base el 16. Su uso actual está muy vinculado a la informática y ciencias de la computación, pues los computadores suelen utilizar el byte u octeto como unidad básica de memoria; y, debido a que un byte representa 2^8 valores posibles, y esto puede representarse como 2^8 = 2^4 \cdot 2^4 = 16 \cdot 16 = 1 \cdot 16^2 + 0 \cdot .
El sistema binario, llamado también sistema diádico1 en ciencias de la computación, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1). Es uno de los que se utiliza en las computadoras, debido a que trabajan internamente con dos niveles de voltaje, por lo cual su sistema de numeración natural es el sistema binario (encendido 1, apagado 0.
ResponderEliminarEjemplo: el sistema binario puede ser representado solo por dos dígitos.
Un número binario puede ser representado por cualquier secuencia de bits (dígitos binarios), que suelen representar cualquier mecanismo capaz de usar dos estados mutuamente excluyentes. Las siguientes secuencias de símbolos podrían ser interpretadas como el mismo valor numérico binario:
1 0 1 0 0 1 1 0 1 1
¦ − ¦ − − ¦ ¦ − ¦ ¦
x o x o o x x o x x
y n y n n y y n y y
El valor numérico representado en cada caso depende del valor asignado a cada símbolo. En una computadora, los valores numéricos pueden representar dos voltajes diferentes; también pueden indicar polaridades magnéticas sobre un disco magnético. Un "positivo", "sí", o "sobre el estado" no es necesariamente el equivalente al valor numérico de uno; esto depende de la nomenclatura usada.
De acuerdo con la representación más habitual, que es usando números arábigos, los números binarios comúnmente son escritos usando los símbolos 0 y 1. Los números binarios se escriben a menudo con subíndices, prefijos o sufijos para indicar su base.
SISTEMA DE NUMERACION
El sistema numérico decimal que utilizamos para representarlos números, utiliza diez símbolos llamados cifras.Este sistema de numeración es el másusado, tiene como base el número 10, osea que posee 10 dígitos (o simbolos)diferentes (0, 1, 2, 3, 4, 5, 6, 7, 8, 9).
BINARIO
El sistema binario, en matemáticas e informática, esun sistema de numeración en el que los números serepresentan utilizando solamente las cifras cero y uno(0 y 1)
OCTALDebido a que el sistema octal tiene como base 8, que es la tercera potencia de 2, y quedos es la base del sistema binario, es posible establecer un método directo para convertirde la base dos a la base ocho, sin tener que convertir de binario a decimal y luego dedecimal a octal.
HEXADECIMAL
Debido a que el sistema Hexadecimal tiene comobase 16, que es la cuarta potencia de 2, y que doses la base del sistema binario, es posibleestablecer un método directo para convertir de labase dos a la base diez y seis, sin tener queconvertir de binario a decimal y luego de decimal aHexadecimal
DECIMAL
Sistema de numeración binario.
ResponderEliminarEl sistema de numeración binario utiliza sólo dos dígitos, el cero (0) y el uno (1).
En una cifra binaria, cada dígito tiene distinto valor dependiendo de la posición que ocupe. El valor de cada posición es el de una potencia de base 2, elevada a un exponente igual a la posición del dígito menos uno. Se puede observar que, tal y como ocurría con el sistema decimal, la base de la potencia coincide con la cantidad de dígitos utilizados (2) para representar los números.
De acuerdo con estas reglas, el número binario 1011 tiene un valor que se calcula así:
1*23 + 0*22 + 1*21 + 1*20 , es decir:
8 + 0 + 2 + 1 = 11
HEXADECIMAL
Debido a que el sistema Hexadecimal tiene comobase 16, que es la cuarta potencia de 2, y que doses la base del sistema binario, es posibleestablecer un método directo para convertir de labase dos a la base diez y seis, sin tener queconvertir de binario a decima
¿QUE ES UN SISTEMA BINARIO? es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1). Es uno de los que se utiliza en las computadoras, debido a que trabajan internamente con dos niveles de voltaje, por lo cual su sistema de numeración natural es el sistema binario. Se basa en la representación de cantidades utilizando los dígitos 1 y 0. Por tanto su base es 2 (número de dígitos del sistema). Cada dígito de un número en este sistema se denomina bit
ResponderEliminarQué es un sistema de numeración, binario, Octal, Decimal, Hexadecimal?
SISTEMA DE NUMERACION
El sistema numérico decimal que utilizamos para representarlos números, utiliza diez símbolos llamados cifras.Este sistema de numeración es el másusado, tiene como base el número 10, osea que posee 10 dígitos (o simbolos)diferentes (0, 1, 2, 3, 4, 5, 6, 7, 8, 9).
BINARIO
El sistema binario, en matemáticas e informática, esun sistema de numeración en el que los números serepresentan utilizando solamente las cifras cero y uno(0 y 1)
OCTALDebido a que el sistema octal tiene como base 8, que es la tercera potencia de 2, y quedos es la base del sistema binario, es posible establecer un método directo para convertirde la base dos a la base ocho, sin tener que convertir de binario a decimal y luego dedecimal a octal.
HEXADECIMAL
Debido a que el sistema Hexadecimal tiene comobase 16, que es la cuarta potencia de 2, y que doses la base del sistema binario, es posibleestablecer un método directo para convertir de labase dos a la base diez y seis, sin tener queconvertir de binario a decimal y luego de decimal aHexadecimal
DECIMAL
APLICACIONES
ResponderEliminarEn 1937, Claude Shannon realizó su tesis doctoral en el MIT, en la cual implementaba el Álgebra de Boole y aritmética binaria utilizando relés y conmutadores por primera vez en la historia. Titulada Un Análisis Simbólico de Circuitos Conmutadores y Relés, la tesis de Shannon básicamente fundó el diseño práctico de circuitos digitales.
En noviembre de 1937, George Stibitz, trabajando por aquel entonces en los Laboratorios Bell, construyó una computadora basada en relés —a la cual apodó "Modelo K" (porque la construyó en una cocina, en inglés "kitchen")— que utilizaba la suma binaria para realizar los cálculos. Los Laboratorios Bell autorizaron un completo programa de investigación a finales de 1938, con Stibitz al mando.
El 8 de enero de 1940 terminaron el diseño de una "Calculadora de Números Complejos", la cual era capaz de realizar cálculos con números complejos. En una demostración en la conferencia de la Sociedad Estadounidense de Matemática, el 11 de septiembre de 1940, Stibitz logró enviar comandos de manera remota a la Calculadora de Números Complejos a través de la línea telefónica mediante un teletipo.
COMO REALIZAR UNA SUMA?
La operación binaria en una operación decimal, resolver la decimal, y después transformar el resultado en un (número) binario. Operamos como en el sistema decimal: comenzamos a sumar desde la derecha, en nuestro ejemplo, 1 + 1 = 10, entonces escribimos 0 en la fila del resultado y llevamos 1 (este "1" se llama acarreo o arrastre). A continuación se suma el acarreo a la siguiente columna: 1 + 0 + 0 = 1.
Este comentario ha sido eliminado por el autor.
ResponderEliminarEl sistema binario, llamado también sistema diádico1 en ciencias de la computación, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1). Es uno de los que se utiliza en las computadoras, debido a que trabajan internamente con dos niveles de voltaje, por lo cual su sistema de numeración natural es el sistema binario
ResponderEliminarSISTEMA DE NUMERACION
El sistema numérico decimal que utilizamos para representarlos números, utiliza diez símbolos llamados cifras.Este sistema de numeración es el másusado, tiene como base el número 10, osea que posee 10 dígitos (o simbolos)diferentes (0, 1, 2, 3, 4, 5, 6, 7, 8, 9).
BINARIO
El sistema binario, en matemáticas e informática, esun sistema de numeración en el que los números serepresentan utilizando solamente las cifras cero y uno(0 y 1)
OCTALDebido a que el sistema octal tiene como base 8, que es la tercera potencia de 2, y quedos es la base del sistema binario, es posible establecer un método directo para convertirde la base dos a la base ocho, sin tener que convertir de binario a decimal y luego dedecimal a octal.
SISTEMA DE NUMERACIÓN HEXADECIMAL
En el sistema hexadecimal los números se representan con dieciséis símbolos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E y F. Se utilizan los caracteres A, B, C, D, E y F representando las cantidades decimales 10, 11, 12, 13, 14 y 15 respectivamente, porque no hay dígitos mayores que 9 en el sistema decimal. El valor de cada uno de estos símbolos depende, como es lógico, de su posición, que se calcula mediante potencias de base 16.
Este comentario ha sido eliminado por el autor.
ResponderEliminar¿Qué es el sistema binario?
ResponderEliminarEs un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1). Es uno de los que se utiliza en las computadoras, debido a que trabajan internamente con dos niveles de voltaje, por lo cual su sistema de numeración natural es el sistema binario.
¿Cómo realizar sumas?
1. Alinear los números que desea añadir como lo haría si estuviera agregando números decimales.
2. Comience con los dos números en la columna de la derecha.
3. Suma los números siguiendo las reglas de la suma decimal (1 +0 = 1, 0 +0 = 0) a menos que ambas cifras sean un 1.
4. Agregue 1+1 como "10" si está presente. Escriba "0" y lleve adelante un "1" para sumar a la siguiente columna.
5. Comience en la próxima columna a la izquierda
6. Repita los pasos anteriores. Recuerde que 1 +1 = 10 y 1+1+1 = 11. Recuerde que debe llevar el "1".
¿Qué es un sistema de numeración?
Un sistema de numeración es un conjunto de símbolos y reglas de generación que permiten construir todos los números válidos.
Un sistema de numeración puede representarse como
Donde:
Es el sistema de numeración considerado (p.ej. decimal, binario, etc.).
Es el conjunto de símbolos permitidos en el sistema. En el caso del sistema decimal son {0,1,...9}; en el binario son {0,1}; en el octal son {0,1,...7}; en el hexadecimal son {0,1,...9, A, B, C, D, E, F}.
Son las reglas que nos indican qué números son válidos en el sistema, y cuáles no. En un sistema de numeración posicional las reglas son bastante simples, mientras que la numeración romana requiere reglas algo más elaboradas.
Para indicar en qué sistema de numeración se representa una cantidad se añade como subíndice a la derecha el número de símbolos que se pueden representar en dicho sistema.
¿Qué es un sistema Octal?
El sistema numérico en base 8 se llama octal y utiliza los dígitos del 0 al 7. En informática a veces se utiliza la numeración octal en vez de la hexadecimal. Tiene la ventaja de que no requiere utilizar otros símbolos diferentes de los dígitos. Sin embargo, para trabajar con bytes o conjuntos de ellos, asumiendo que un byte es una palabra de 8 bits, suele ser más cómodo el sistema hexadecimal, por cuanto todo byte así definido es completamente representable por dos dígitos hexadecimales.
¿Qué es un sistema Decimal?
El sistema de numeración decimal, también llamado sistema decimal, es un sistema de numeración posicional en el que las cantidades se representan utilizando como base aritmética las potencias del número diez. El conjunto de símbolos utilizado (sistema de numeración arábiga) se compone de diez cifras : cero (0) - uno (1) - dos (2) - tres (3) -cuatro (4) - cinco (5) - seis (6) - siete (7) - ocho (8) y nueve (9).
¿Qué es un sistema hexadecimal?
El sistema hexadecimal es el sistema de numeración posicional que tiene como base el 16. Su uso actual está muy vinculado a la informática y ciencias de la computación, pues los computadores suelen utilizar el byte u octeto como unidad básica de memoria; y, debido a que un byte representa valores posibles, y esto puede representarse como , que equivale al número en base 16 , dos dígitos hexadecimales corresponden exactamente a un byte.
En principio, dado que el sistema usual de numeración es de base decimal y, por ello, sólo se dispone de diez dígitos, se adoptó la convención de usar las seis primeras letras del alfabeto latino para suplir los dígitos que nos faltan. El conjunto de símbolos sería, por tanto, el siguiente:
¿Qué es el sistema binario?
ResponderEliminarEs un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1). Es uno de los que se utiliza en las computadoras, debido a que trabajan internamente con dos niveles de voltaje, por lo cual su sistema de numeración natural es el sistema binario.
¿Cómo realizar sumas?
1. Alinear los números que desea añadir como lo haría si estuviera agregando números decimales.
2. Comience con los dos números en la columna de la derecha.
3. Suma los números siguiendo las reglas de la suma decimal (1 +0 = 1, 0 +0 = 0) a menos que ambas cifras sean un 1.
4. Agregue 1+1 como "10" si está presente. Escriba "0" y lleve adelante un "1" para sumar a la siguiente columna.
5. Comience en la próxima columna a la izquierda
6. Repita los pasos anteriores. Recuerde que 1 +1 = 10 y 1+1+1 = 11. Recuerde que debe llevar el "1".
¿Qué es un sistema de numeración?
Un sistema de numeración es un conjunto de símbolos y reglas de generación que permiten construir todos los números válidos.
Un sistema de numeración puede representarse como
Donde:
Es el sistema de numeración considerado (p.ej. decimal, binario, etc.).
Es el conjunto de símbolos permitidos en el sistema. En el caso del sistema decimal son {0,1,...9}; en el binario son {0,1}; en el octal son {0,1,...7}; en el hexadecimal son {0,1,...9, A, B, C, D, E, F}.
Son las reglas que nos indican qué números son válidos en el sistema, y cuáles no. En un sistema de numeración posicional las reglas son bastante simples, mientras que la numeración romana requiere reglas algo más elaboradas.
Para indicar en qué sistema de numeración se representa una cantidad se añade como subíndice a la derecha el número de símbolos que se pueden representar en dicho sistema.
¿Qué es un sistema Octal?
El sistema numérico en base 8 se llama octal y utiliza los dígitos del 0 al 7. En informática a veces se utiliza la numeración octal en vez de la hexadecimal. Tiene la ventaja de que no requiere utilizar otros símbolos diferentes de los dígitos. Sin embargo, para trabajar con bytes o conjuntos de ellos, asumiendo que un byte es una palabra de 8 bits, suele ser más cómodo el sistema hexadecimal, por cuanto todo byte así definido es completamente representable por dos dígitos hexadecimales.
¿Qué es un sistema Decimal?
El sistema de numeración decimal, también llamado sistema decimal, es un sistema de numeración posicional en el que las cantidades se representan utilizando como base aritmética las potencias del número diez. El conjunto de símbolos utilizado (sistema de numeración arábiga) se compone de diez cifras : cero (0) - uno (1) - dos (2) - tres (3) -cuatro (4) - cinco (5) - seis (6) - siete (7) - ocho (8) y nueve (9).
¿Qué es un sistema hexadecimal?
El sistema hexadecimal es el sistema de numeración posicional que tiene como base el 16. Su uso actual está muy vinculado a la informática y ciencias de la computación, pues los computadores suelen utilizar el byte u octeto como unidad básica de memoria; y, debido a que un byte representa valores posibles, y esto puede representarse como , que equivale al número en base 16 , dos dígitos hexadecimales corresponden exactamente a un byte.
En principio, dado que el sistema usual de numeración es de base decimal y, por ello, sólo se dispone de diez dígitos, se adoptó la convención de usar las seis primeras letras del alfabeto latino para suplir los dígitos que nos faltan. El conjunto de símbolos sería, por tanto, el siguiente:
Este comentario ha sido eliminado por el autor.
ResponderEliminar¿Qué es un sistema Octal?
ResponderEliminarEl sistema numérico en base 8 se llama octal y utiliza los dígitos del 0 al 7. En informática a veces se utiliza la numeración octal en vez de la hexadecimal. Tiene la ventaja de que no requiere utilizar otros símbolos diferentes de los dígitos. Sin embargo, para trabajar con bytes o conjuntos de ellos, asumiendo que un byte es una palabra de 8 bits, suele ser más cómodo el sistema hexadecimal, por cuanto todo byte así definido es completamente representable por dos dígitos hexadecimales.
¿Qué es un sistema Decimal?
El sistema de numeración decimal, también llamado sistema decimal, es un sistema de numeración posicional en el que las cantidades se representan utilizando como base aritmética las potencias del número diez. El conjunto de símbolos utilizado (sistema de numeración arábiga) se compone de diez cifras : cero (0) - uno (1) - dos (2) - tres (3) -cuatro (4) - cinco (5) - seis (6) - siete (7) - ocho (8) y nueve (9).
¿Qué es un sistema hexadecimal?
El sistema hexadecimal es el sistema de numeración posicional que tiene como base el 16. Su uso actual está muy vinculado a la informática y ciencias de la computación, pues los computadores suelen utilizar el byte u octeto como unidad básica de memoria; y, debido a que un byte representa valores posibles, y esto puede representarse como , que equivale al número en base 16 , dos dígitos hexadecimales corresponden exactamente a un byte.
En principio, dado que el sistema usual de numeración es de base decimal y, por ello, sólo se dispone de diez dígitos, se adoptó la convención de usar las seis primeras letras del alfabeto latino para suplir los dígitos que nos faltan. El conjunto de símbolos sería, por tanto, el siguiente:
SISTEMA BINARIO.
ResponderEliminares un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1). Es uno de los que se utiliza en las computadoras, debido a que trabajan internamente con dos niveles de voltaje, por lo cual su sistema de numeración natural es el sistema binario. Se basa en la representación de cantidades utilizando los dígitos 1 y 0. Por tanto su base es 2 (número de dígitos del sistema). Cada dígito de un número en este sistema se denomina bit
¿Qué es un sistema Octal?
ResponderEliminarEl sistema numérico en base 8 se llama octal y utiliza los dígitos del 0 al 7. En informática a veces se utiliza la numeración octal en vez de la hexadecimal. Tiene la ventaja de que no requiere utilizar otros símbolos diferentes de los dígitos. Sin embargo, para trabajar con bytes o conjuntos de ellos, asumiendo que un byte es una palabra de 8 bits, suele ser más cómodo el sistema hexadecimal, por cuanto todo byte así definido es completamente representable por dos dígitos hexadecimales.
¿Qué es un sistema Decimal?
El sistema de numeración decimal, también llamado sistema decimal, es un sistema de numeración posicional en el que las cantidades se representan utilizando como base aritmética las potencias del número diez. El conjunto de símbolos utilizado (sistema de numeración arábiga) se compone de diez cifras : cero (0) - uno (1) - dos (2) - tres (3) -cuatro (4) - cinco (5) - seis (6) - siete (7) - ocho (8) y nueve (9).
¿Qué es un sistema hexadecimal?
El sistema hexadecimal es el sistema de numeración posicional que tiene como base el 16. Su uso actual está muy vinculado a la informática y ciencias de la computación, pues los computadores suelen utilizar el byte u octeto como unidad básica de memoria; y, debido a que un byte representa valores posibles, y esto puede representarse como , que equivale al número en base 16 , dos dígitos hexadecimales corresponden exactamente a un byte.
En principio, dado que el sistema usual de numeración es de base decimal y, por ello, sólo se dispone de diez dígitos, se adoptó la convención de usar las seis primeras letras del alfabeto latino para suplir los dígitos que nos faltan
SISTEMA BINARIO.
es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1). Es uno de los que se utiliza en las computadoras, debido a que trabajan internamente con dos niveles de voltaje, por lo cual su sistema de numeración natural es el sistema binario. Se basa en la representación de cantidades utilizando los dígitos 1 y 0. Por tanto su base es 2 (número de dígitos del sistema)
Este comentario ha sido eliminado por el autor.
ResponderEliminarQue es el sistema binario?
ResponderEliminarEl sistema binario, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno. Es uno de los que se utiliza en las computadoras, debido a que trabajan internamente con dos niveles de voltaje, por lo cual su sistema de numeración natural es el sistema binario
El antiguo matemático indio Pingala presentó la primera descripción que se conoce de un sistema de numeración binario en el siglo tercero antes de nuestra era, lo cual coincidió con su descubrimiento del concepto del número cero.
De forma general, binario es un sistema que utiliza sólo dos valores para representar sus cuantías. Es un sistema de base dos. Esos dos valores son el "0" y el "1".
A partir de eso podemos concluir que para el 0 hemos desconectado, o no tenemos señal, y para el 1 hemos conectado o estamos con señal.
El sistema que utilizamos diariamente, es el sistema de base diez, llamado también base decimal. Ese sistema utiliza los números: 0, 1, 2, 3, 4, 5, 6, 7, 8, y 9.
Para las computadoras la base binaria es la ideal.
En las computadoras esos ceros ("0s") y unos ("1s") son llamados dígitos binarios o solamente bit (conjunción de dos palabras de la lengua inglesa binary digit), que es la menor unidad de información de las computadoras. De esta forma, es igual decir dígito "0" y dígito "1", o, bit "0" y bit "1".
Que es el sistema binario?
ResponderEliminarEl sistema binario, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno. Es uno de los que se utiliza en las computadoras, debido a que trabajan internamente con dos niveles de voltaje, por lo cual su sistema de numeración natural es el sistema binario
El antiguo matemático indio Pingala presentó la primera descripción que se conoce de un sistema de numeración binario en el siglo tercero antes de nuestra era, lo cual coincidió con su descubrimiento del concepto del número cero.
De forma general, binario es un sistema que utiliza sólo dos valores para representar sus cuantías. Es un sistema de base dos. Esos dos valores son el "0" y el "1".
A partir de eso podemos concluir que para el 0 hemos desconectado, o no tenemos señal, y para el 1 hemos conectado o estamos con señal.
El sistema que utilizamos diariamente, es el sistema de base diez, llamado también base decimal. Ese sistema utiliza los números: 0, 1, 2, 3, 4, 5, 6, 7, 8, y 9.
Para las computadoras la base binaria es la ideal.
En las computadoras esos ceros ("0s") y unos ("1s") son llamados dígitos binarios o solamente bit (conjunción de dos palabras de la lengua inglesa binary digit), que es la menor unidad de información de las computadoras. De esta forma, es igual decir dígito "0" y dígito "1", o, bit "0" y bit "1".
¿QUE ES UN SISTEMA VINARIO ?
ResponderEliminarEl sistema binario, llamado también sistema diádico1 en ciencias de la computación, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1).El sistema que utilizamos diariamente, es el sistema de base diez, llamado también base decimal. Ese sistema utiliza los números: 0, 1, 2, 3, 4, 5, 6, 7, 8, y 9.
Para las computadoras la base BINARIA es la ideal.En las computadoras esos ceros ("0s") y unos ("1s") son llamados dígitos binarios o solamente bit
COMO USAR FOTOLOG
ResponderEliminarHacerse miembro del fotolog, llenando el formulario con los correspondientes datos personales, mostrados en el posteo anterior.
2. Seleccionar una imagen, que se desee, colocándole un subtitulo, y el comentario que se ansíe colocar.
Luego colocar la contraseña propuesta en el paso 1, presionando más tarde aceptar. (Imagen A)
3. Diseñar a gusto las preferencias, con colores de fondo, letras, etc. Para lograrlo se tendrá que ir a MI CUENTA, allí se observara: INFORMACION DE LA CUENTA; PERFIL; PREFERENCIAS; ESTADOS DE LA CUENTA PREMIUM (abajo se explicara que es cada uno). (Imagen B)
4. Agregar a tus amigos a AMIGOS/FAVORITOS, entrando en su fotolog, y hacer clic en la frase dicha.
5. Comentar con lo que pienso o me parezca sobre la imagen y lo dicho en el comentario.
6. Para eliminar un posteo se tendrá que ir a ARCHIVO, haciendo clic sobre la imagen que se desee eliminar (imagen C). Luego se observara una frase que diráborrar y se tendrá que hacer clic en ella colocando luego nuestra contraseña. (Imagen D)
7. Para Cambiar la información de mi cuenta se tendrá que ir tal y como lo dice el nombre a INFORMACION DE LA CUENTA en donde se encontrara la configuración del fotolog, se podrá cambiar, por ejemplo, la contraseña, el titulo del fotolog, entre otras cosas
8. En el perfil se podrá colocar una foto, el e-mail de uno mismo, etc. En síntesis sirve para que el que entre en su fotolog conozca sus intereses, gustos, etc.
9. ¿Cómo abrir y cerrar la cuenta? Es muy sencillo, para abrir se tendrá que ir a la pagina principal de fotolog (www.fotolog.com) y de allí le aparecerá una ventana donde dice que introduzca su nombre de usuario y su contraseña, al colocar ambas se hará enter y automáticamente se le abrirá la pagina de su fotolog (Imagen F). Para cerrar la cuenta se tendrá que ir a cerrar sesión (que se encuentra arriba a la derecha en una esquina).(Imagen E)
10. Por último como cerrar tu cuenta fotolog, para cerrarla se tendrá que ir a MI CUENTA y de allí en información de la cuenta se observara que debajo de todo lo que dice abra una frase que dirá: Para cerrar tu cuenta Fotolog de forma permanente
Haz click aquí
Hasta luego espero que les haya gustado y les sirva de algo todos los pasos que les brindamos y les explicamos como usar este maravilloso programa que es muy usado actualmente por miles de personas de todos lados del mundo. Atentamente Mica,Andre.
El sistema binario, llamado también sistema diádico1 en ciencias de la computación, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1). Es uno de los que se utiliza en las computadoras, debido a que trabajan internamente con dos niveles de voltaje, por lo cual su sistema de numeración natural es el sistema binario
ResponderEliminarEl antiguo matemático indio Pingala presentó la primera descripción que se conoce de un sistema de numeración binario en el siglo tercero antes de nuestra era, lo cual coincidió con su descubrimiento del concepto del número cero.
El sistema binario moderno fue documentado en su totalidad por Leibniz, en el siglo XVII, en su artículo "Explication de l'Arithmétique Binaire". En él se mencionan los símbolos binarios usados por matemáticos chinos. Leibniz utilizó el 0 y el 1, al igual que el sistema de numeración binario actual.
ResponderEliminarEn 1854, el matemático británico George Boole publicó un artículo que marcó un antes y un después, detallando un sistema de lógica que terminaría denominándose Álgebra de Boole. Dicho sistema desempeñaría un papel fundamental en el desarrollo del sistema binario actual, particularmente en el desarrollo de circuitos electrónicos.
¿QUE ES UN SISTEMA VINARIO ?
ResponderEliminarEl sistema binario, llamado también sistema diádico1 en ciencias de la computación, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1).El sistema que utilizamos diariamente, es el sistema de base diez, llamado también base decimal. Ese sistema utiliza los números: 0, 1, 2, 3, 4, 5, 6, 7, 8, y 9.
Para las computadoras la base BINARIA es la ideal.En las computadoras esos ceros ("0s") y unos ("1s") son llamados dígitos binarios o solamente bit
El sistema binario, llamado también sistema diádico1 en ciencias de la computación, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1). Es uno de los que se utiliza en las computadoras, debido a que trabajan internamente con dos niveles de voltaje, por lo cual su sistema de numeración natural es el sistema binario
ResponderEliminarEl antiguo matemático indio Pingala presentó la primera descripción que se conoce de un sistema de numeración binario en el siglo tercero antes de nuestra era, lo cual coincidió con su descubrimiento del concepto del número cero.
Una serie completa de 8 trigramas y 64 hexagramas (análogos a 3 bits) y números binarios de 6 bits eran conocidos en la antigua China en el texto clásico del I Ching. Series similares de combinaciones binarias también han sido utilizadas en sistemas de adivinación tradicionales africanos, como el Ifá, así como en la geomancia medieval occidental.
Un arreglo binario ordenado de los hexagramas del I Ching, representando la secuencia decimal de 0 a 63, y un método para generar el mismo fue desarrollado por el erudito y filósofo Chino Adgart en el siglo XI.
En 1605 Francis Bacon habló de un sistema por el cual las letras del alfabeto podrían reducirse a secuencias de dígitos binarios, las cuales podrían ser codificadas como variaciones apenas visibles en la fuente de cualquier texto arbitrario.
El sistema binario moderno fue documentado en su totalidad por Leibniz, en el siglo XVII, en su artículo "Explication de l'Arithmétique Binaire". En él se mencionan los símbolos binarios usados por matemáticos chinos. Leibniz utilizó el 0 y el 1, al igual que el sistema de numeración binario actual.
En 1854, el matemático británico George Boole publicó un artículo que marcó un antes y un después, detallando un sistema de lógica que terminaría denominándose Álgebra de Boole. Dicho sistema desempeñaría un papel fundamental en el desarrollo del sistema binario actual, particularmente en el desarrollo de circuitos electrónicos.